A parametric kind of Fubini-Fibonacci polynomials and their generalizations
Resumen
In this paper, we introduce bivariate kind of three-variable Fubini-Fibonacci polynomials and their associated numbers within the approach of Golden $F$- Calculus. Utilizing generating functions, we derive several fundamental properties, including summation theorems, recurrence relations, symmetry properties, and $F$-derivative identities. We further establish connections with, Bernoulli-Fibonacci, Euler-Fibonacci, Genocchi-Fibonacci Stirling-Fibonacci numbers of the second kind and present mu,ltiple summation formulas and convolution-type identities. The proposed approach enriches the theory of Fibonacci-based special polynomials and opens new avenues for applications in combinatorics, number theory, approximation theory, and matrix analysis.Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-12-20
Sección
Advances in Nonlinear Analysis and Applications
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



