A parametric kind of Fubini-Fibonacci polynomials and their generalizations
Résumé
In this paper, we introduce bivariate kind of three-variable Fubini-Fibonacci polynomials and their associated numbers within the approach of Golden $F$- Calculus. Utilizing generating functions, we derive several fundamental properties, including summation theorems, recurrence relations, symmetry properties, and $F$-derivative identities. We further establish connections with, Bernoulli-Fibonacci, Euler-Fibonacci, Genocchi-Fibonacci Stirling-Fibonacci numbers of the second kind and present mu,ltiple summation formulas and convolution-type identities. The proposed approach enriches the theory of Fibonacci-based special polynomials and opens new avenues for applications in combinatorics, number theory, approximation theory, and matrix analysis.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-12-20
Rubrique
Advances in Nonlinear Analysis and Applications
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



