A parametric kind of Fubini-Fibonacci polynomials and their generalizations

  • Khan Prince Mohammad Bin Fahd University
  • Manoj Sharma
  • Manoj Sharma

Résumé

In this paper, we introduce bivariate kind of three-variable Fubini-Fibonacci polynomials and their associated numbers within the approach of Golden $F$- Calculus. Utilizing generating functions, we derive several fundamental properties, including summation theorems, recurrence relations, symmetry properties, and $F$-derivative identities. We further establish connections with, Bernoulli-Fibonacci, Euler-Fibonacci, Genocchi-Fibonacci Stirling-Fibonacci numbers of the second kind and present mu,ltiple summation formulas and convolution-type identities. The proposed approach enriches the theory of Fibonacci-based special polynomials and opens new avenues for applications in combinatorics, number theory, approximation theory, and matrix analysis.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-12-20
Rubrique
Advances in Nonlinear Analysis and Applications