Morita context and generalized (α, β)−derivations

  • Nadeem ur Rehman Aligarh Muslim University Department of Mathematics
  • Radwan Mohammed AL-Omary Aligarh Muslim University Department of Mathematics
  • Mohammed M. Al-Shomrani King Abdul Aziz University Faculty of Science Department of Mathematics

Resumen

Let $R$ and $S$ be rings of a semi-projective Morita context, and $\alpha, \beta$ be automorphisms of $R$. An additive mapping $F$: $R\to R$ is called a generalized $(\alpha,\beta)$-derivation on $R$ if there exists an $(\alpha,\beta)$-derivation $d$: $R\to R$ such that $F(xy)=F(x)\alpha(y)+\beta(x)d(y)$ holds for all $x,y \in R$. For any $x,y \in R$, set $[x, y]_{\alpha, \beta} = x \alpha(y) - \beta(y) x$ and $(x \circ y)_{\alpha, \beta} = x \alpha(y) + \beta(y) x$. In the present paper, we shall show that if the ring $S$ is reduced then it is a commutative, in a compatible way with the ring $R$ . Also, we obtain some results on bialgebras via Cauchy modules.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Nadeem ur Rehman, Aligarh Muslim University Department of Mathematics

 

Mathematics

Publicado
2011-12-25
Sección
Articles