Morita context and generalized (α, β)−derivations

  • Nadeem ur Rehman Aligarh Muslim University Department of Mathematics
  • Radwan Mohammed AL-Omary Aligarh Muslim University Department of Mathematics
  • Mohammed M. Al-Shomrani King Abdul Aziz University Faculty of Science Department of Mathematics

Résumé

Let $R$ and $S$ be rings of a semi-projective Morita context, and $\alpha, \beta$ be automorphisms of $R$. An additive mapping $F$: $R\to R$ is called a generalized $(\alpha,\beta)$-derivation on $R$ if there exists an $(\alpha,\beta)$-derivation $d$: $R\to R$ such that $F(xy)=F(x)\alpha(y)+\beta(x)d(y)$ holds for all $x,y \in R$. For any $x,y \in R$, set $[x, y]_{\alpha, \beta} = x \alpha(y) - \beta(y) x$ and $(x \circ y)_{\alpha, \beta} = x \alpha(y) + \beta(y) x$. In the present paper, we shall show that if the ring $S$ is reduced then it is a commutative, in a compatible way with the ring $R$ . Also, we obtain some results on bialgebras via Cauchy modules.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Nadeem ur Rehman, Aligarh Muslim University Department of Mathematics

 

Mathematics

Publiée
2011-12-25
Rubrique
Research Articles