Internal analysis and optimization applied to parameter estimation under uncertainty
Resumen
We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve efficient solutions implied the use of the $\ell_1$ norm instead of usual $\ell_2$ regression. Finally, an implementation using real data was performed, demonstrating the ability of interval analysis to encapsulate uncertainty while facing non-trivial parameter estimation problems.Descargas
La descarga de datos todavía no está disponible.
Publicado
2018-04-01
Número
Sección
Research Articles
Derechos de autor 2017 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).