Internal analysis and optimization applied to parameter estimation under uncertainty

  • Jose Daniel Gallego-Posada Universidad EAFIT
  • Maria Eugenia Puerta-Yepes Universidad EAFIT

Résumé

We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve efficient solutions implied the use of the $\ell_1$ norm instead of usual $\ell_2$ regression. Finally, an implementation using real data was performed, demonstrating the ability of interval analysis to encapsulate uncertainty while facing non-trivial parameter estimation problems.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Jose Daniel Gallego-Posada, Universidad EAFIT
Mathematical Engineering
Maria Eugenia Puerta-Yepes, Universidad EAFIT
Research Group in Functional Analysis and Applications
Publiée
2018-04-01
Rubrique
Research Articles