Internal analysis and optimization applied to parameter estimation under uncertainty
Résumé
We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve efficient solutions implied the use of the $\ell_1$ norm instead of usual $\ell_2$ regression. Finally, an implementation using real data was performed, demonstrating the ability of interval analysis to encapsulate uncertainty while facing non-trivial parameter estimation problems.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-04-01
Numéro
Rubrique
Research Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).