Igusa-Todorov function on path rings
Resumen
The aim of this paper is to study the relation between the Igusa-Todorov functions for $A$, a finite dimensional algebra, and the algebra $AQ$. In particular it is proved that $\fidim (AQ) = \fidim (A) + 1$ when $A$ is a Gorenstein algebra. As a consequence of the previous result, it is exhibited an example of a family of algebras $\{A_n\}_{n \in \mathbb{N}}$ such that $\fidim (A_n) = n$ and each $A_n$ is of $\Omega^{\infty}$-infinite representation type.Descargas
Citas
M. Auslander, M. Bridger, Stable module theory, Memoirs Amer. Math. Soc. 94, Amer. Math. Soc., Providence, RI (1969).
M. Auslander and I. Reiten Cohen-Macaulay and Gorenstein Algebras, Progr.Math.95 (1991), pp. 221-245.
L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math. 1747. Springer-Verlag, 2000.
E. E. Enochs, S. Estrada, Projective representations of quivers, Comm. Algebra. 33(10), pp. 3467-3478 (2005).
E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4), pp. 611-633 (1995).
F. Huard, M. Lanzilotta, Self-injective right artinian rings and Igusa-Todorov functions, Algebras and Representation Theory, 16 (3), pp. 765-770 (2012).
F. Huard, M. Lanzilotta, O. Mendoza, An approach to the finitistic dimension conjecture, Journal of Algebra, 319 (9), pp. 3916-3934 (2008).
Y. Iwanaga, On rings with self-injective dimension 1, Osaka J. Math. 15, pp. 33-45 (1978).
K. Igusa, G. Todorov, On finitistic global dimension conjecture for artin algebras, Representations of algebras and related topics, pp. 201-204, Fields Inst. Commun., 45, American Mathematical Society, Providence, RI, (2005).
Z. Leszczynski, On the representation type of tensor product algebras, Fundamenta Mathematicae. 144(2), pp. 143-161 (1994).
M. Lanzilotta, G. Mata Igusa-Todorov functions for Artin algebras Journal of pure and applied algebra, DOI: 10.1016/j.jpaa.2017.03.012 (2017).
B. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl. 11 pp. 1802-1812 (2012).
P. Zhang, A brief introduction to Gorenstein projective modules, Notes https://www.math.uni-bielefeld.de/sek/sem/abs/zhangpu4.pdf
Derechos de autor 2020 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).