Igusa-Todorov function on path rings
Résumé
The aim of this paper is to study the relation between the Igusa-Todorov functions for $A$, a finite dimensional algebra, and the algebra $AQ$. In particular it is proved that $\fidim (AQ) = \fidim (A) + 1$ when $A$ is a Gorenstein algebra. As a consequence of the previous result, it is exhibited an example of a family of algebras $\{A_n\}_{n \in \mathbb{N}}$ such that $\fidim (A_n) = n$ and each $A_n$ is of $\Omega^{\infty}$-infinite representation type.Téléchargements
Références
M. Auslander, M. Bridger, Stable module theory, Memoirs Amer. Math. Soc. 94, Amer. Math. Soc., Providence, RI (1969).
M. Auslander and I. Reiten Cohen-Macaulay and Gorenstein Algebras, Progr.Math.95 (1991), pp. 221-245.
L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math. 1747. Springer-Verlag, 2000.
E. E. Enochs, S. Estrada, Projective representations of quivers, Comm. Algebra. 33(10), pp. 3467-3478 (2005).
E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4), pp. 611-633 (1995).
F. Huard, M. Lanzilotta, Self-injective right artinian rings and Igusa-Todorov functions, Algebras and Representation Theory, 16 (3), pp. 765-770 (2012).
F. Huard, M. Lanzilotta, O. Mendoza, An approach to the finitistic dimension conjecture, Journal of Algebra, 319 (9), pp. 3916-3934 (2008).
Y. Iwanaga, On rings with self-injective dimension 1, Osaka J. Math. 15, pp. 33-45 (1978).
K. Igusa, G. Todorov, On finitistic global dimension conjecture for artin algebras, Representations of algebras and related topics, pp. 201-204, Fields Inst. Commun., 45, American Mathematical Society, Providence, RI, (2005).
Z. Leszczynski, On the representation type of tensor product algebras, Fundamenta Mathematicae. 144(2), pp. 143-161 (1994).
M. Lanzilotta, G. Mata Igusa-Todorov functions for Artin algebras Journal of pure and applied algebra, DOI: 10.1016/j.jpaa.2017.03.012 (2017).
B. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl. 11 pp. 1802-1812 (2012).
P. Zhang, A brief introduction to Gorenstein projective modules, Notes https://www.math.uni-bielefeld.de/sek/sem/abs/zhangpu4.pdf
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



