Certain results associated with hybrid relatives of the q-Sheffer sequences

  • Subuhi Khan Aligarh Muslim University
  • Tabinda Nahid Aligarh Muslim University

Resumen

The intended objective of this paper is to introduce a new class of the hybrid q-Sheffer polynomials by means of the generating function and series definition. The determinant definition and other striking properties of these polynomials are established. Certain results for the continuous q-Hermite-Appell polynomials are obtained. The graphical depictions are performed for certain members of the hybrid q-Sheffer family. The zeros of these members are also explored using numerical simulations. Finally, the orthogonality condition for the hybrid q-Sheffer polynomials is established.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aigner, M., A Course in Enumeration, Grad. Texts in Math., Springer, Berlin, (2007).

Al-Salam, W. A., q-Appell polynomials, Ann. Mat. Pura Appl. 4(77), 31-45, (1967). https://doi.org/10.1007/BF02416939

Andrews, L. C., Special Functions for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, (1985).

Andrews, G. E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, (1999).

Appell, P., Sur une classe de polynomes, Ann. Sci. Ecole. Norm. Sup. 9, 119-144, (1880). https://doi.org/10.24033/asens.186

Araci, S., Acikgoz, M., Jolany, H. and He, Y., Identities involving q-Genocchi numbers and polynomials, Notes on Number theory and Discrete Mathematics, 20, 64-74, (2014).

Boukhemis, A. and Maroni, P., Une caracterisation des polynomes strictement 1p orthogomnaux de type Scheffer, Etude du cas p = 2, J. Approx. Theory, 54, 67-91, (1988). https://doi.org/10.1016/0021-9045(88)90117-7

Brezinski, C., Biorthogonality and its Applications to Numerical Analysis, Marcel Dekker, New York, (1992).

Cheon, Gi-Sang and Jung, Ji-Hwan, The q-Sheffer sequences of a new type and associated orthogonal polynomials, Linear Algebra Appl. 491, 171-186, (2016). https://doi.org/10.1016/j.laa.2015.07.008

Ernst, T., q-Bernoulli and q-Euler polynomials, an Umbral approach, Int. J. Diff. Equ. 1(1), 31-80, (2006).

Iseghem, J. Van, Approximants de pade vectoriels, (2nd ed.) These d'etat, Univ. des Sciences et Techniques de LilleFlandre-Artois, (1987).

Kac, V. G. and Cheung, P., Quantum Calculus, New York, Springer, (2002). https://doi.org/10.1007/978-1-4613-0071-7

Keleshteri, M. Eini and Mahmudov, N. I., A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput. 260, 351-369, (2015). https://doi.org/10.1016/j.amc.2015.03.017

Khan, S. and Riyasat, M., A determinantal approach to Sheffer-Appell polynomials via monomiality principle, J. Math. Anal. Appl. 421, 806-829, (2015). https://doi.org/10.1016/j.jmaa.2014.07.044

Maroni, P., L'orthogonalite et les recurrences de polynomes d'ordre superieur a deux, Ann. Fac. Sci. Toulouse, 10, 105-139, (1989). https://doi.org/10.5802/afst.672

Sheffer, I. M., Some properties of polynomial sets of type zero, Duke Math. J. 5, 590-622, (1939). https://doi.org/10.1215/S0012-7094-39-00549-1

Publicado
2021-12-18
Sección
Articles