Certain results associated with hybrid relatives of the q-Sheffer sequences
Résumé
The intended objective of this paper is to introduce a new class of the hybrid q-Sheffer polynomials by means of the generating function and series definition. The determinant definition and other striking properties of these polynomials are established. Certain results for the continuous q-Hermite-Appell polynomials are obtained. The graphical depictions are performed for certain members of the hybrid q-Sheffer family. The zeros of these members are also explored using numerical simulations. Finally, the orthogonality condition for the hybrid q-Sheffer polynomials is established.
Téléchargements
Références
Aigner, M., A Course in Enumeration, Grad. Texts in Math., Springer, Berlin, (2007).
Al-Salam, W. A., q-Appell polynomials, Ann. Mat. Pura Appl. 4(77), 31-45, (1967). https://doi.org/10.1007/BF02416939
Andrews, L. C., Special Functions for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, (1985).
Andrews, G. E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, (1999).
Appell, P., Sur une classe de polynomes, Ann. Sci. Ecole. Norm. Sup. 9, 119-144, (1880). https://doi.org/10.24033/asens.186
Araci, S., Acikgoz, M., Jolany, H. and He, Y., Identities involving q-Genocchi numbers and polynomials, Notes on Number theory and Discrete Mathematics, 20, 64-74, (2014).
Boukhemis, A. and Maroni, P., Une caracterisation des polynomes strictement 1p orthogomnaux de type Scheffer, Etude du cas p = 2, J. Approx. Theory, 54, 67-91, (1988). https://doi.org/10.1016/0021-9045(88)90117-7
Brezinski, C., Biorthogonality and its Applications to Numerical Analysis, Marcel Dekker, New York, (1992).
Cheon, Gi-Sang and Jung, Ji-Hwan, The q-Sheffer sequences of a new type and associated orthogonal polynomials, Linear Algebra Appl. 491, 171-186, (2016). https://doi.org/10.1016/j.laa.2015.07.008
Ernst, T., q-Bernoulli and q-Euler polynomials, an Umbral approach, Int. J. Diff. Equ. 1(1), 31-80, (2006).
Iseghem, J. Van, Approximants de pade vectoriels, (2nd ed.) These d'etat, Univ. des Sciences et Techniques de LilleFlandre-Artois, (1987).
Kac, V. G. and Cheung, P., Quantum Calculus, New York, Springer, (2002). https://doi.org/10.1007/978-1-4613-0071-7
Keleshteri, M. Eini and Mahmudov, N. I., A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput. 260, 351-369, (2015). https://doi.org/10.1016/j.amc.2015.03.017
Khan, S. and Riyasat, M., A determinantal approach to Sheffer-Appell polynomials via monomiality principle, J. Math. Anal. Appl. 421, 806-829, (2015). https://doi.org/10.1016/j.jmaa.2014.07.044
Maroni, P., L'orthogonalite et les recurrences de polynomes d'ordre superieur a deux, Ann. Fac. Sci. Toulouse, 10, 105-139, (1989). https://doi.org/10.5802/afst.672
Sheffer, I. M., Some properties of polynomial sets of type zero, Duke Math. J. 5, 590-622, (1939). https://doi.org/10.1215/S0012-7094-39-00549-1
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).