A variation on strongly lacunary delta ward continuity in 2-normed spaces
Resumen
A sequence $(x_{k})$ of points in a subset E of a 2-normed space $X$ is called strongly lacunary $\delta$-quasi-Cauchy, or $N_\theta$-$\delta$-quasi-Cauchy if $(\Delta x_k)$ is $N_\theta$-convergent to 0, that is $\lim_{r\rightarrow\infty}\frac{1}{h_r}\sum_{k\in I_r}||\Delta^2 x_k, z||=0$ for every fixed $z\in X$. A function defined on a subset $E$ of $X$ is called strongly lacunary $\delta$-ward continuous if it preserves $N_{\theta}$-$\delta$-quasi-Cauchy sequences, i.e. $(f(x_{k}))$ is an $N_{\theta}$-$\delta$-quasi-Cauchy sequence whenever $(x_{k})$ is. In this study we obtain some theorems related to strongly lacunary $\delta$-quasi-Cauchy sequences.
Descargas
Citas
S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26, 115-148, (1963). https://doi.org/10.1002/mana.19630260109
S. Gahler, Lineare 2-normietre Raume, Math. Nachr., 28, 1-43, (1965). https://doi.org/10.1002/mana.19640280102
R. Freese, Y. J. Cho, Geometry of Linear 2-normed spaces, Nova Science Publishers, Inc., Hauppauge, NY,(2001). ISBN: 1-59033-019-6 MR 2005j:46002.
H. G. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27, 3, 321-329, (2001). MR1855958 (2002g:46032).
E. Savas, A-Sequence Spaces in 2-Normed Space Defined by Ideal Convergence and an Orlicz Function, Abstr. Appl. Anal., Article Number: 741382, (2011). https://doi.org/10.1155/2011/741382
Ljubisa D. R. Kocinac and Mohammad H. M. Rashid, On ideal convergence of double sequences in the topology induced by a fuzzy 2-norm, Twms Journal of Pure and Applied Mathematics, 8, 1, 97-111, (2017).
Mohammad H. M. Rashid and Ljubisas D. R. Kocinac, Ideal convergence in 2-fuzzy 2-normed spaces Hacet. J. Math. Stat., 46, 1, 149-162, (2017). https://doi.org/10.15672/HJMS.2016.406
M. Arslan and E. Dundar, I-Convergence and I-Cauchy sequence of functions in 2-normed spaces, Konuralp Journal of Mathematics, 6, 1, 57-62, (2018).
M. Arslan and E. Dundar, On I-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bull. Math., 42, 491-502, (2018).
M. Arslan and E. Dundar, Rough convergence in 2-normed spaces, Bulletion of Mathematical Analysis and Applications, ISSN:1821-1291, URL:http://www.bmathaa.org, Volume 10, Issue 3, 1-9, (2018).
M. Gurdal, On ideal convergent sequences in 2-normed spaces. Thai J. Math., 4, 1, 85-91, (2006).
M. Gurdal and I. Acik, On I-Cauchy sequences in 2-normed spaces, Mathematical Inequalities and Applications, 11, 2, 349-354, (2008). https://doi.org/10.7153/mia-11-26
M. Gurdal and S. Pehlivan, Statistical convergence in 2-normed spaces. Southeast Asian Bull. Math., 33, 257-264, (2009).
H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, (1951). https://doi.org/10.4064/cm-2-3-4-241-244
A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc., 37 (3), 508-520 (1978). https://doi.org/10.1112/plms/s3-37.3.508
J.A. Fridy, and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160, 1, 43-51, (1993). MR 94j:40014.
https://doi.org/10.2140/pjm.1993.160.43
J.A. Fridy, and C. Orhan, Lacunary statistical Summability, Journal of mathematical analysis and applications, 173, 2, 497-504, (1993). https://doi.org/10.1006/jmaa.1993.1082
D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, 117, 4, 328-333, (2010).
https://doi.org/10.4169/000298910x480793
H. Cakalli, Forward continuity, J. Comput. Anal. Appl., 13, 2, 225-230, (2011).
H. Cakalli, Statistical ward continuity, Appl. Math. Lett., 24, 10, 1724-1728, (2011).
https://doi.org/10.1016/j.aml.2011.04.029
H. Cakalli and H. Kaplan, A variation on strongly lacunary ward continuity, J. Math. Anal. 7, 3, 13-20, (2016).
https://doi.org/10.1063/1.4930489
A. Sonmez and H. Cakalli, A variation on strongly lacunary ward continuity, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si Mat. (N.S.) Tomul LXII, 2, 3, (2016).
H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9, 4371-4380, (2016). https://doi.org/10.22436/jnsa.009.06.77
H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, 1-8, (2019). https://doi.org/10.1063/1.5095095
I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe Journal of Mathematics, 1, 1, 18-23, (2019). https://doi.org/10.1063/1.5095128
S. Yildiz, Lacunary statistical p-quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, 9-17, (2019).
https://doi.org/10.1063/1.5095130
H. Cakalli, and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics, 66, 2, 71-79, (2017). https://doi.org/10.1501/Commua1_0000000802
S. Ersan and H. Cakalli, Ward continuity in 2-normed spaces, Filomat,29:7,1507-1513,(2015).
https://doi.org/10.2298/FIL1507507E
H. Cakalli and S. Ersan, Lacunary ward continuity in 2-normed spaces, Filomat, 29:10, 2257-2263, (2015).
https://doi.org/10.2298/FIL1510257C
H. Cakalli, S. Ersan, Strongly lacunary ward continuity in 2-normed spaces, The Scientific World Journal, Volume 2014, Article ID 479679, 5 pages. https://doi.org/10.1155/2014/479679
S. Ersan, Strongly lacunary -quasi-Cauchy sequences in 2-normed spaces, 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July-6 August 2018, Istanbul, Turkey, AIP Conference Proceedings 2086, 030013 (2019). https://doi.org/10.1063/1.5095098
Derechos de autor 2019 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).