A variation on strongly lacunary delta ward continuity in 2-normed spaces

  • Sibel Ersan Maltepe University

Résumé

A sequence $(x_{k})$ of points in a subset E of a 2-normed space $X$ is called strongly lacunary $\delta$-quasi-Cauchy, or $N_\theta$-$\delta$-quasi-Cauchy if $(\Delta x_k)$ is $N_\theta$-convergent to 0, that is $\lim_{r\rightarrow\infty}\frac{1}{h_r}\sum_{k\in I_r}||\Delta^2 x_k, z||=0$ for every fixed $z\in X$. A function defined on a subset $E$ of $X$ is called strongly lacunary $\delta$-ward continuous if it preserves  $N_{\theta}$-$\delta$-quasi-Cauchy sequences, i.e. $(f(x_{k}))$ is an $N_{\theta}$-$\delta$-quasi-Cauchy sequence whenever $(x_{k})$ is. In this study we obtain some theorems related to strongly lacunary $\delta$-quasi-Cauchy sequences.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Sibel Ersan, Maltepe University

Faculty of Engineering and Natural Sciences

Références

S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26, 115-148, (1963). https://doi.org/10.1002/mana.19630260109

S. Gahler, Lineare 2-normietre Raume, Math. Nachr., 28, 1-43, (1965). https://doi.org/10.1002/mana.19640280102

R. Freese, Y. J. Cho, Geometry of Linear 2-normed spaces, Nova Science Publishers, Inc., Hauppauge, NY,(2001). ISBN: 1-59033-019-6 MR 2005j:46002.

H. G. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27, 3, 321-329, (2001). MR1855958 (2002g:46032).

E. Savas, A-Sequence Spaces in 2-Normed Space Defined by Ideal Convergence and an Orlicz Function, Abstr. Appl. Anal., Article Number: 741382, (2011). https://doi.org/10.1155/2011/741382

Ljubisa D. R. Kocinac and Mohammad H. M. Rashid, On ideal convergence of double sequences in the topology induced by a fuzzy 2-norm, Twms Journal of Pure and Applied Mathematics, 8, 1, 97-111, (2017).

Mohammad H. M. Rashid and Ljubisas D. R. Kocinac, Ideal convergence in 2-fuzzy 2-normed spaces Hacet. J. Math. Stat., 46, 1, 149-162, (2017). https://doi.org/10.15672/HJMS.2016.406

M. Arslan and E. Dundar, I-Convergence and I-Cauchy sequence of functions in 2-normed spaces, Konuralp Journal of Mathematics, 6, 1, 57-62, (2018).

M. Arslan and E. Dundar, On I-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bull. Math., 42, 491-502, (2018).

M. Arslan and E. Dundar, Rough convergence in 2-normed spaces, Bulletion of Mathematical Analysis and Applications, ISSN:1821-1291, URL:http://www.bmathaa.org, Volume 10, Issue 3, 1-9, (2018).

M. Gurdal, On ideal convergent sequences in 2-normed spaces. Thai J. Math., 4, 1, 85-91, (2006).

M. Gurdal and I. Acik, On I-Cauchy sequences in 2-normed spaces, Mathematical Inequalities and Applications, 11, 2, 349-354, (2008). https://doi.org/10.7153/mia-11-26

M. Gurdal and S. Pehlivan, Statistical convergence in 2-normed spaces. Southeast Asian Bull. Math., 33, 257-264, (2009).

H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, (1951). https://doi.org/10.4064/cm-2-3-4-241-244

A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc., 37 (3), 508-520 (1978). https://doi.org/10.1112/plms/s3-37.3.508

J.A. Fridy, and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160, 1, 43-51, (1993). MR 94j:40014.

https://doi.org/10.2140/pjm.1993.160.43

J.A. Fridy, and C. Orhan, Lacunary statistical Summability, Journal of mathematical analysis and applications, 173, 2, 497-504, (1993). https://doi.org/10.1006/jmaa.1993.1082

D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, 117, 4, 328-333, (2010).

https://doi.org/10.4169/000298910x480793

H. Cakalli, Forward continuity, J. Comput. Anal. Appl., 13, 2, 225-230, (2011).

H. Cakalli, Statistical ward continuity, Appl. Math. Lett., 24, 10, 1724-1728, (2011).

https://doi.org/10.1016/j.aml.2011.04.029

H. Cakalli and H. Kaplan, A variation on strongly lacunary ward continuity, J. Math. Anal. 7, 3, 13-20, (2016).

https://doi.org/10.1063/1.4930489

A. Sonmez and H. Cakalli, A variation on strongly lacunary ward continuity, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si Mat. (N.S.) Tomul LXII, 2, 3, (2016).

H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9, 4371-4380, (2016). https://doi.org/10.22436/jnsa.009.06.77

H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, 1-8, (2019). https://doi.org/10.1063/1.5095095

I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe Journal of Mathematics, 1, 1, 18-23, (2019). https://doi.org/10.1063/1.5095128

S. Yildiz, Lacunary statistical p-quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, 9-17, (2019).

https://doi.org/10.1063/1.5095130

H. Cakalli, and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics, 66, 2, 71-79, (2017). https://doi.org/10.1501/Commua1_0000000802

S. Ersan and H. Cakalli, Ward continuity in 2-normed spaces, Filomat,29:7,1507-1513,(2015).

https://doi.org/10.2298/FIL1507507E

H. Cakalli and S. Ersan, Lacunary ward continuity in 2-normed spaces, Filomat, 29:10, 2257-2263, (2015).

https://doi.org/10.2298/FIL1510257C

H. Cakalli, S. Ersan, Strongly lacunary ward continuity in 2-normed spaces, The Scientific World Journal, Volume 2014, Article ID 479679, 5 pages. https://doi.org/10.1155/2014/479679

S. Ersan, Strongly lacunary -quasi-Cauchy sequences in 2-normed spaces, 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July-6 August 2018, Istanbul, Turkey, AIP Conference Proceedings 2086, 030013 (2019). https://doi.org/10.1063/1.5095098

Publiée
2019-10-14