New elliptic group over a nonlocal ring $\mathbb{F}_{2^d}[\varepsilon],\,\varepsilon^{3}=\varepsilon^2$
Resumen
In this paper, we consider the set of elliptic curves over an extended nonlocal ring of characteristic two $A=\frac{\mathbb{F}_{2^d}[X]}{(X^3- X^2)}$.Then by studying the arithmetic operation of this ring, and define such elliptic curves, we come to classify their elements.
More precisely, we define a new group law structure on this elliptic curve by using one of the explicit bijection
$E_{\pi_{1}(a),\pi_{1}(b)}(\mathbb{F}_{2^d})\times E_{\pi_{2}(a),\pi_{2}(b)}(A_2)\simeq E_{a,b}(A),$
where $A_2=\frac{\mathbb{F}_{2^d}[X]}{(X^2)}$ is a local ring, $\pi_{1}$ is a sum projection of the coordinates elements in A,
and $\pi_{2}$ is the surjective morphism defined by: $$ \pi_2: A\longrightarrow A_2=\frac{\mathbb{F}_{2^d}[X]}{(X^2)}$$ $$ x_0+x_1\varepsilon+x_2\varepsilon^2\longmapsto x_0+x_1\sigma\,\,\mbox{ where}\,\,\sigma^2=0.$$
Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-03-24
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



