New elliptic group over a nonlocal ring $\mathbb{F}_{2^d}[\varepsilon],\,\varepsilon^{3}=\varepsilon^2$
Resumo
In this paper, we consider the set of elliptic curves over an extended nonlocal ring of characteristic two $A=\frac{\mathbb{F}_{2^d}[X]}{(X^3- X^2)}$.Then by studying the arithmetic operation of this ring, and define such elliptic curves, we come to classify their elements.
More precisely, we define a new group law structure on this elliptic curve by using one of the explicit bijection
$E_{\pi_{1}(a),\pi_{1}(b)}(\mathbb{F}_{2^d})\times E_{\pi_{2}(a),\pi_{2}(b)}(A_2)\simeq E_{a,b}(A),$
where $A_2=\frac{\mathbb{F}_{2^d}[X]}{(X^2)}$ is a local ring, $\pi_{1}$ is a sum projection of the coordinates elements in A,
and $\pi_{2}$ is the surjective morphism defined by: $$ \pi_2: A\longrightarrow A_2=\frac{\mathbb{F}_{2^d}[X]}{(X^2)}$$ $$ x_0+x_1\varepsilon+x_2\varepsilon^2\longmapsto x_0+x_1\sigma\,\,\mbox{ where}\,\,\sigma^2=0.$$
Downloads
Não há dados estatísticos.
Publicado
2025-03-24
Edição
Seção
Artigos
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



