Fixed point results for G-F-Contractive mappings of Hardy-Rogers type

Resumen

In this paper, we present the notation of G-F-Contractive mappings of Hardy-Rogers type and give some fixed point results of Hardy-Rogers type for self-mappings in complete G-metric spaces.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

G .Sudhaamsh Mohan Reddy, ICFAI Foundation for Higher Education

Assistant Professor

Faculty of Science and Technology

Citas

S. Banach, Sur Les operationsdans Les ensembles abstraitsetleur application aux equations integrales, Fundamenta Mathematicae, 3, 133-181, (1922).

V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 105, (2012).

S. K. Chatterjea, Fixed-point theorems, Comptes Rendus de l’Academie Bulgare des Sciences, 25, 727-730, (1972).

M. Cosentino, P. Vetro, Fixed Point Results for F-Contractive Mappings of Hardy-Rogers-Type, Filomat, 28:4, 715-722,(2014).

M. Edelstein, On fixed and periodic points under contractive mappings, Journal of the London Mathematical Society, 37, 74-79, (1962).

R. Kannan, Some results on fixed points, Bulletin of Calcutta Mathematical Society, 60, 71-76, (1968).

J. J. Nieto, R. L. Pouso, R. Rodriguez-Lopez, Fixed point theorems in ordered abstract spaces, Proceedings of the American Mathematical Society 132, 2505-2517, (2007).

D. Reem, S. Reich, A. J. Zaslavski, Two Results in Metric Fixed Point Theory, Journal of Fixed Point Theory and Applications 1, 149-157, (2007).

S. Reich, Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14, 121-124, (1971).

I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.

R. Saadati, S. M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modelling, 52, 797-801, (2010).

T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Analysis, Theory, Methods and Applications, 71,5313-5317,(2009).

D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications 2012:94 (2012).

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7, 289-297, (2006).

G S M Reddy, A Common Fixed Point theorem on complete G-metric spaces, International Journal of Pure and Applied Mathematics, 118, 195-202, (2018).

G S M Reddy, Generalization of Contraction Principle on G-Metric Spaces, Global Journal of Pure and Applied Mathematics, 14, 1177-1283, (2018).

G S M Reddy, Fixed point theorems of contractions of G-metric Spaces and property’P’in G-Metric spaces, Global Journal of Pure and Applied Mathematics, 14, 885-896, (2018).

G S M Reddy, New proof for generalization of contraction principle on G-Metric spaces, Jour of Adv Research in Dynamical and Control Systems, Vol. 11, Special Issue-08, 2708-2713, (2019).

G S M Reddy, V Srinivas Chary, Fixed Point Results for Almost ZG-contraction via Simulation Functions in G-metric spaces, International Journal of Control and Automation, 12(6), 608-615, (2019).

G S M Reddy, Fixed point theorems of Rus -Reich -Ciric type contraction and Hardy- Rogers type contraction on G-metric spaces, International Journal of Advanced Science and Technology, 29(2), 2782 -2787, (2020).

G S M Reddy, Generalized Ciric Type Contraction in G - metric spaces, International Journal of Grid and Distributed Computing, 13(1), 302-308, (2020).

G S M Reddy, Fixed Point Results for Pata Type Contractions in G - Metric Spaces, TEST Engineering and Management, 83, 3317 - 3320, March-April, (2020).

G S M Reddy, Fixed Point Theorems for (ε, λ)-Uniformly Locally Generalized Contractions, Global Journal of Pure and Applied Mathematics, 14, 1177-1183, (2018).

Publicado
2024-05-02
Sección
Articles