Fixed point results for G-F-Contractive mappings of Hardy-Rogers type
Résumé
In this paper, we present the notation of G-F-Contractive mappings of Hardy-Rogers type and give some fixed point results of Hardy-Rogers type for self-mappings in complete G-metric spaces.
Téléchargements
Références
S. Banach, Sur Les operationsdans Les ensembles abstraitsetleur application aux equations integrales, Fundamenta Mathematicae, 3, 133-181, (1922).
V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 105, (2012).
S. K. Chatterjea, Fixed-point theorems, Comptes Rendus de l’Academie Bulgare des Sciences, 25, 727-730, (1972).
M. Cosentino, P. Vetro, Fixed Point Results for F-Contractive Mappings of Hardy-Rogers-Type, Filomat, 28:4, 715-722,(2014).
M. Edelstein, On fixed and periodic points under contractive mappings, Journal of the London Mathematical Society, 37, 74-79, (1962).
R. Kannan, Some results on fixed points, Bulletin of Calcutta Mathematical Society, 60, 71-76, (1968).
J. J. Nieto, R. L. Pouso, R. Rodriguez-Lopez, Fixed point theorems in ordered abstract spaces, Proceedings of the American Mathematical Society 132, 2505-2517, (2007).
D. Reem, S. Reich, A. J. Zaslavski, Two Results in Metric Fixed Point Theory, Journal of Fixed Point Theory and Applications 1, 149-157, (2007).
S. Reich, Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14, 121-124, (1971).
I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
R. Saadati, S. M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modelling, 52, 797-801, (2010).
T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Analysis, Theory, Methods and Applications, 71,5313-5317,(2009).
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications 2012:94 (2012).
Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7, 289-297, (2006).
G S M Reddy, A Common Fixed Point theorem on complete G-metric spaces, International Journal of Pure and Applied Mathematics, 118, 195-202, (2018).
G S M Reddy, Generalization of Contraction Principle on G-Metric Spaces, Global Journal of Pure and Applied Mathematics, 14, 1177-1283, (2018).
G S M Reddy, Fixed point theorems of contractions of G-metric Spaces and property’P’in G-Metric spaces, Global Journal of Pure and Applied Mathematics, 14, 885-896, (2018).
G S M Reddy, New proof for generalization of contraction principle on G-Metric spaces, Jour of Adv Research in Dynamical and Control Systems, Vol. 11, Special Issue-08, 2708-2713, (2019).
G S M Reddy, V Srinivas Chary, Fixed Point Results for Almost ZG-contraction via Simulation Functions in G-metric spaces, International Journal of Control and Automation, 12(6), 608-615, (2019).
G S M Reddy, Fixed point theorems of Rus -Reich -Ciric type contraction and Hardy- Rogers type contraction on G-metric spaces, International Journal of Advanced Science and Technology, 29(2), 2782 -2787, (2020).
G S M Reddy, Generalized Ciric Type Contraction in G - metric spaces, International Journal of Grid and Distributed Computing, 13(1), 302-308, (2020).
G S M Reddy, Fixed Point Results for Pata Type Contractions in G - Metric Spaces, TEST Engineering and Management, 83, 3317 - 3320, March-April, (2020).
G S M Reddy, Fixed Point Theorems for (ε, λ)-Uniformly Locally Generalized Contractions, Global Journal of Pure and Applied Mathematics, 14, 1177-1183, (2018).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).