Entropy solutions for nonlinear parabolic problems involving the generalized $p(x)$-Laplace operator and $L^{1}$ data
Resumen
In this paper we prove the existence of an entropy solution to nonlinear parabolic equations with nonhomogeneous Neumann boundary conditions and initial data in $L^{1}.$ By a time discretization technique we analyze the existence, the uniqueness and the stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-09-24
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



