Entropy solutions for nonlinear parabolic problems involving the generalized $p(x)$-Laplace operator and $L^{1}$ data
Résumé
In this paper we prove the existence of an entropy solution to nonlinear parabolic equations with nonhomogeneous Neumann boundary conditions and initial data in $L^{1}.$ By a time discretization technique we analyze the existence, the uniqueness and the stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-09-24
Numéro
Rubrique
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



