Quartic points on C_a : y^7=x^a(x-1)^a
Resumen
The goal of this work is to give a parametrization of the set of quartic points on the familyof quotients of the Fermat curve of degree $7$ of affine equation
$$ \mathcal{C}_{a} : y^{7}=x^{a}\left(x-1 \right)^{a} $$
where $a \in \lbrace 1, 2, 3\rbrace $. We use the Mordell-Weil group, the Riemann-Roch spaces
and birational morphisms to give this parametrization on $\mathcal{C}_{a}$.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-12-20
Sección
Mathematics and Computing - Innovations and Applications (ICMSC-2025)
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



