Quartic points on C_a : y^7=x^a(x-1)^a
Résumé
The goal of this work is to give a parametrization of the set of quartic points on the familyof quotients of the Fermat curve of degree $7$ of affine equation
$$ \mathcal{C}_{a} : y^{7}=x^{a}\left(x-1 \right)^{a} $$
where $a \in \lbrace 1, 2, 3\rbrace $. We use the Mordell-Weil group, the Riemann-Roch spaces
and birational morphisms to give this parametrization on $\mathcal{C}_{a}$.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-12-20
Rubrique
Mathematics and Computing - Innovations and Applications (ICMSC-2025)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



