Integral Kannappan-cosine addition law on semigroups
Resumen
Let $S$ be a semigroup, $\sigma:S \longrightarrow S$ be an involutive automorphism, $\mu$ be a complex measure that is a linear combination of Dirac measures and $\alpha \in \mathbb{C}$. We determine the complex-valued solutions of the following integral Kannappan-cosine addition law with an additional term $$\int_{S}g(x\sigma(y)t) d\mu(t)=g(x)g(y)-f(x)f(y)+\alpha \int_{S}f(x\sigma(y)t) d\mu(t) ,\; x,y \in S.$$ As application we solve two functional equations that have not been studied until now. The continuous solutions on topological semigroups are found.Descargas
La descarga de datos todavía no está disponible.
Publicado
2026-02-18
Sección
Special Issue: Mathematics and applications
Derechos de autor 2026 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



