Integral Kannappan-cosine addition law on semigroups

Résumé

Let  $S$ be a semigroup,  $\sigma:S \longrightarrow S$ be an involutive automorphism, $\mu$ be a complex measure that is a  linear combination of Dirac measures and $\alpha \in \mathbb{C}$. We determine the  complex-valued solutions of  the following integral Kannappan-cosine addition law  with an additional term $$\int_{S}g(x\sigma(y)t) d\mu(t)=g(x)g(y)-f(x)f(y)+\alpha \int_{S}f(x\sigma(y)t) d\mu(t)  ,\; x,y \in S.$$   As application we solve two functional equations that have not been studied until now. The continuous solutions on topological semigroups are found.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2026-02-18
Rubrique
Special Issue: Mathematics and applications