Existence of entropy solutions for some nonlinear elliptic problems involving variable exponent and measure data
Résumé
In this paper, we study the existence of entropy solutions for some nonlinear $p(x)-$elliptic equation of the type $$Au - \mbox{div }\phi(u) + H(x,u,\nabla u) = \mu,$$ where $A$ is an operator of Leray-Lions type acting from $W_{0}^{1,p(x)}(\Omega)$ into its dual, the strongly nonlinear term $H$ is assumed only to satisfy some nonstandard growth condition with respect to $|\nabla u|,$ here $\>\phi(\cdot)\in C^{0}(I\!\!R,I\!\!R^{N})\>$ and $\mu$ belongs to ${\mathcal{M}}_{0}^{b}(\Omega)$.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-04-01
Numéro
Rubrique
Research Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).