Existence of entropy solutions for some nonlinear elliptic problems involving variable exponent and measure data

  • Taghi Ahmedatt Université Sidi Mohamed Ben Abdellah
  • Elhoussine Azroul Université Sidi Mohamed Ben Abdellah
  • Hassane Hjiaj Université Abdelmalek Essaadi
  • Abdelfattah Touzani Université Sidi Mohamed Ben Abdellah
Keywords: Sobolev spaces with variable exponents, nonlinear elliptic problem, entropy solutions, renormalized solutions

Abstract

In this paper, we study the existence of entropy solutions for some nonlinear $p(x)-$elliptic equation of the type $$Au - \mbox{div }\phi(u) + H(x,u,\nabla u) = \mu,$$ where $A$ is an operator of Leray-Lions type acting from $W_{0}^{1,p(x)}(\Omega)$ into its dual, the strongly nonlinear term $H$ is assumed only to satisfy some nonstandard growth condition with respect to $|\nabla u|,$ here $\>\phi(\cdot)\in C^{0}(I\!\!R,I\!\!R^{N})\>$ and $\mu$ belongs to ${\mathcal{M}}_{0}^{b}(\Omega)$.

Downloads

Download data is not yet available.

Author Biographies

Taghi Ahmedatt, Université Sidi Mohamed Ben Abdellah
Faculté des Sciences Dhar El Mahraz
Elhoussine Azroul, Université Sidi Mohamed Ben Abdellah
Faculté des Sciences Dhar El Mahraz
Hassane Hjiaj, Université Abdelmalek Essaadi
Faculté des Sciences Tétouan
Abdelfattah Touzani, Université Sidi Mohamed Ben Abdellah
Faculté des Sciences Dhar El Mahraz
Published
2018-04-01
Section
Research Articles