Derivatives with respect to horizontal and vertical lifts of the deformed complete lift metric G_{f} on tangent bundle.

  • Haşim Çayir Giresun University
  • Rabia Cakan Akpinar Kafkas University

Résumé

In this paper, we define the deformed complete lift metric G_{f} on tangent bundle, which is completely determined by its action on vector fields of type X^{H} and ω^{V}. Later, we obtain the covarient and Lie derivatives applied to the deformed complete lift metric G_{f} with respect to the horizontal and vertical lifts of vector fields, respectively.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

M. A. Akyol, Metallic maps between metallic Riemannian manifolds and constancy of certain maps, Honam J. of Math., 41(2), (2019), 343-356.

M. A. Akyol and B. Sahin, Conformal semi-invariant Riemannian maps to Kaehler manifolds, Revista De la Union Matematica Argentina, 60 (2), (2019), 459-468. https://doi.org/10.33044/revuma.v60n2a12

H. Cayır and K. Akdag, Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Math. Sci., 4 (4), (2016), 42-50. https://doi.org/10.20852/ntmsci.2016422036

H. Cayır and G. Koseoglu, Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to XC and XV on Tangent Bundle T(M), New Trends in Math. Sci., 4 (1), (2016), 153-159. https://doi.org/10.20852/ntmsci.2016115657

P. Dombrowski, On the geometry of the tangent bundles, J Reine Angew Math., 210, (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73

A. Gezer and M. Ozkan, Notes on the tangent bundle with deformed complete lift metric, 38, (2014), 1038-1049. https://doi.org/10.3906/mat-1402-30

b. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math., 3, (2010), 437-447. https://doi.org/10.2478/s11533-010-0023-6

B. Sahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56, (2013), 173-183. https://doi.org/10.4153/CMB-2011-144-8

A. A. Salimov, Tensor Operators and Their applications, Nova Science Publ., New York, 2013.

S. Sasaki, On the diferential geometry of tangent bundles of Riemannian manifolds, Tohoku Math J., 10, (1958), 338-358. https://doi.org/10.2748/tmj/1178244668

K. Yano and S. Ishihara, Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker, 1973.

Publiée
2022-02-04
Rubrique
Proceedings