Regularizing effect of absorbtion term in singular and degenerate elliptic problems
Résumé
Dans cet article, nous étudions l’existence et la régularité des solutions au problème singulier suivant\
\\begin{equation}
\left\{
\begin{array}{lll}
&-\displaystyle\mbox{div} \big(a(x,u)\vert\nabla u\vert^{p-2}\nabla u\big) + \vert u\vert^{s-1}u =h(u)f &\mbox{ in } \Omega \\
&u\geq 0 &\mbox{ in }\Omega \\
&u=0 &\mbox{ on } \delta\Omega\\
\end{array}
\right.\end{equation}
prouvant que le terme d’ordre inférieur $u\vert u\vert^{s-1}$ a des effets régularisants sur les solutions dans le cas d’un opérateur elliptique à coercivité dégénérée.
Téléchargements
Références
A. Alvino, L.Boccardo ,V.Ferone ,L.Orsina,G.Trombetti,Existence results for nonlinear elliptic equations with degenerate coercivity. Ann.Mat.Pura Appl.182,53-79(2003).
A. Benkirane, Y. El Had_, M. El Moumni, Existence Results for Doubly Nonlinear Parabolic Equations with Two Lower-Order Terms and L1-Data. Ukr Math J 71, 692{717 (2019).
L. Boccardo, G. Croce.The impact of a lower order term in a Dirichlet problem with a singular nonlinearity, Portugaliae Mathematica, doi:10.4171/PM/2041.
L. Boccardo, A. Dall'Aglio, and L. Orsina,Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46, 51{81 (1998). Suppl.
L. Boccardo and T.Gallouet, Nonlinear elliptic equations with right hand side measure, Comm. Partial Differential Equations 17 (3-4), 641{655 (1992).
L. Boccardo, F.Murat, J.P Puel.Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. 152, 183{196 (1988).
L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. and PDEs, 37(3-4), (2010), 363-380.
A. Carbonaro, G. Metafune and C. Spina, Parabolic Schrodinger operators, J. Math. Anal. Appl. 343 (2008), 965-974.
G. Chen, Nonlinear elliptic equation with lower order term and degenerate coercivity. Math Notes 93, 224{237 (2013).
G. R. Cirmi, Regularity of the solutions to nonlinear elliptic equations with a lower-order term, Nonlinear Analysis 25 (1995) 569-580.
G. Croce, The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity, Rend. Mat. Appl. (7) 27 (3-4), 299{314 (2007).
L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptotic Analysis 84 (2013) 181-195.
L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, J. Elliptic Parabol. Equ. 2 (1-2) (2016) 73-85.
R. Durastanti, F. Oliva, The Dirichlet problem for possibly singular elliptic equations with degenerate coercivity, arXiv:2105.13453.
Y. El Had_, M. El Ouardy, A. Ifzarne, A. Sbai,On nonlinear parabolic equations with singular lower order term. J Elliptic Parabol Equ (2021) https://doi.org/10.1007/s41808-021-00138-5.
M. El Ouardy, Y. El Had_ and A. Sbai,Existence of positive solutions to nonlinear singular parabolic equations with Hardy potential, Journal of Pseudo-Differential Operators and Applications, Doi: 10.1007/s11868-022-00457-8.
M. El Ouardy and Y. El Hadfi,Some nonlinear parabolic problems with singular natural growth term, Results in Mathematics, https://doi.org/10.1007/s00025-022-01631-6.
H. B. Keller, D. S. Choen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech., 16 (1967), 1361{1376.
H. Kheli_, Y. El Had_, Nonlinear elliptic equations with variable exponents involving singular nonlinearity, Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 705{715 (2021).
Leray, J., Lions, J.L. Quelques resultats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty- Browder. Bull. Soc. Math. Fr. 93, 97-107 (1965).
A. Nachman, A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic uids, SIAM J. Appl. Math., 38 (1980), 275{281.
F. Oliva, Regularizing e_ect of absorption terms in singular problems, Journal of mathematical analysis and applica- tions, 472 (1) (2019) 1136-1166.
F. Oliva, F.Petitta, On singular elliptic equations with measure sources, ESAIM: Control, Optimisation and Calculus of Variations, 22, (2016), 289308.
A. Porretta,Uniqueness and homogeneization for a class of noncoercive operators in divergence form , Atti Sem. Mat. Fis. Univ. Modena 46 suppl. (1998), 915-936.
A. Sbai, Y. El Hadfi,Degenerate elliptic problem with a singular nonlinearity,Complex Variables and Elliptic Equations , https://doi.org/10.1080/17476933.2021.2014458.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).