Regularizing effect of absorbtion term in singular and degenerate elliptic problems

Resumo

Dans cet article, nous étudions l’existence et la régularité des solutions au problème singulier suivant\
\\begin{equation}
\left\{
\begin{array}{lll}
&-\displaystyle\mbox{div} \big(a(x,u)\vert\nabla u\vert^{p-2}\nabla u\big) + \vert u\vert^{s-1}u =h(u)f &\mbox{ in } \Omega \\
&u\geq 0 &\mbox{ in }\Omega \\
&u=0 &\mbox{ on } \delta\Omega\\
\end{array}
\right.\end{equation}
prouvant que le terme d’ordre inférieur $u\vert u\vert^{s-1}$ a des effets régularisants sur les solutions dans le cas d’un opérateur elliptique à coercivité dégénérée.

Downloads

Não há dados estatísticos.

Biografia do Autor

Abdelaaziz Sbai, Sultan Moulay Slimane University

National School of Applied Sciences Khouribga

Youssef El hadfi, Sultan Moulay Slimane University

National School of Applied Sciences Khouribga

Referências

A. Alvino, L.Boccardo ,V.Ferone ,L.Orsina,G.Trombetti,Existence results for nonlinear elliptic equations with degenerate coercivity. Ann.Mat.Pura Appl.182,53-79(2003).

A. Benkirane, Y. El Had_, M. El Moumni, Existence Results for Doubly Nonlinear Parabolic Equations with Two Lower-Order Terms and L1-Data. Ukr Math J 71, 692{717 (2019).

L. Boccardo, G. Croce.The impact of a lower order term in a Dirichlet problem with a singular nonlinearity, Portugaliae Mathematica, doi:10.4171/PM/2041.

L. Boccardo, A. Dall'Aglio, and L. Orsina,Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46, 51{81 (1998). Suppl.

L. Boccardo and T.Gallouet, Nonlinear elliptic equations with right hand side measure, Comm. Partial Differential Equations 17 (3-4), 641{655 (1992).

L. Boccardo, F.Murat, J.P Puel.Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. 152, 183{196 (1988).

L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. and PDEs, 37(3-4), (2010), 363-380.

A. Carbonaro, G. Metafune and C. Spina, Parabolic Schrodinger operators, J. Math. Anal. Appl. 343 (2008), 965-974.

G. Chen, Nonlinear elliptic equation with lower order term and degenerate coercivity. Math Notes 93, 224{237 (2013).

G. R. Cirmi, Regularity of the solutions to nonlinear elliptic equations with a lower-order term, Nonlinear Analysis 25 (1995) 569-580.

G. Croce, The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity, Rend. Mat. Appl. (7) 27 (3-4), 299{314 (2007).

L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptotic Analysis 84 (2013) 181-195.

L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, J. Elliptic Parabol. Equ. 2 (1-2) (2016) 73-85.

R. Durastanti, F. Oliva, The Dirichlet problem for possibly singular elliptic equations with degenerate coercivity, arXiv:2105.13453.

Y. El Had_, M. El Ouardy, A. Ifzarne, A. Sbai,On nonlinear parabolic equations with singular lower order term. J Elliptic Parabol Equ (2021) https://doi.org/10.1007/s41808-021-00138-5.

M. El Ouardy, Y. El Had_ and A. Sbai,Existence of positive solutions to nonlinear singular parabolic equations with Hardy potential, Journal of Pseudo-Differential Operators and Applications, Doi: 10.1007/s11868-022-00457-8.

M. El Ouardy and Y. El Hadfi,Some nonlinear parabolic problems with singular natural growth term, Results in Mathematics, https://doi.org/10.1007/s00025-022-01631-6.

H. B. Keller, D. S. Choen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech., 16 (1967), 1361{1376.

H. Kheli_, Y. El Had_, Nonlinear elliptic equations with variable exponents involving singular nonlinearity, Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 705{715 (2021).

Leray, J., Lions, J.L. Quelques resultats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty- Browder. Bull. Soc. Math. Fr. 93, 97-107 (1965).

A. Nachman, A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic uids, SIAM J. Appl. Math., 38 (1980), 275{281.

F. Oliva, Regularizing e_ect of absorption terms in singular problems, Journal of mathematical analysis and applica- tions, 472 (1) (2019) 1136-1166.

F. Oliva, F.Petitta, On singular elliptic equations with measure sources, ESAIM: Control, Optimisation and Calculus of Variations, 22, (2016), 289308.

A. Porretta,Uniqueness and homogeneization for a class of noncoercive operators in divergence form , Atti Sem. Mat. Fis. Univ. Modena 46 suppl. (1998), 915-936.

A. Sbai, Y. El Hadfi,Degenerate elliptic problem with a singular nonlinearity,Complex Variables and Elliptic Equations , https://doi.org/10.1080/17476933.2021.2014458.

Publicado
2024-05-03
Seção
Artigos