Thermo-fluidic Behaviour of Maxwell - Type Hybrid Nano fluids under MHD and Radiative Effects with Wall Slip

  • RAVI UMMIDI GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY,ODISHA,GUNUPUR
  • Madhusudan Patro Department of Mathematics Gandhi Institute of Engineering and Technology University, Odisha, 765022, India
  • Karanam Sreelatha Department of Mathematics Satya Institute of Technology and Management, Vizianagaram, A.P, 530041, India.

Résumé

Mathematicalmodellingisvital forunderstandingandoptimizingNanofluiddynamics in
electroniccoolingsystems. Itenablesresearcherstopredictfluidbehavior,enhanceheattransferperfor
mance,anddesignmoreefficientsystemswithfewerexperimentaltrials.Thisstudypresentsacomprehensive
computational analysis of hybridgraphene-basedNanofluidflowover a stretching surface, incorporating
magnetohydrodynamic(MHD)effects,nonlinearthermalradiation,chemicalreactions,andviscoelasticprop
erties. ThehybridNanofluidcomprisesgrapheneoxideandcoppernanoparticlesdispersedinaNewtonian
basefluid. TheBuongiornomodel accounts fornanoparticlemigrationdue toBrownianmotionandther
mophoresis,while theMaxwellmodel capturesViscoelasticbehavior.Second-order slipboundaryconditions
areimposedtoreflectmicroscaleeffectsrelevantinbiomedicalandmicrofluidicsystems.
Thegoverningpartial differential equations formomentum, energy, andnanoparticleconcentrationare
transformedintoasystemofcoupled,nonlinearordinarydifferentialequationsusingsimilaritytransformations.
Thesearesolvednumericallyviatheshootingmethodcombinedwiththefourth-orderRunge–Kuttaalgorithm
andNewton’siteration.Tovalidatetheresults,MATLAB’sbuilt-insolverbvp4cisalsoemployed.
Theimpactofvariousdimensionlessparameters, includingthemagneticfieldstrength,Weissenbergnum
ber, radiationparameter,Brownianmotion, thermophoresis,andslipcoefficients, issystematicallyanalyzed.
Findings indicatethatanincreasedmagneticfieldreducesfluidvelocityviatheLorentz forceandthickens
thethermalboundarylayer.Thermalradiationelevatesfluidtemperature,whileslipeffectsreducewallshear
stressandheattransferrates.Enhancedthermophoresisleadstoincreasednanoparticlemigration, influencing
bothtemperatureandconcentrationfields.
Comparisonswithexistingliteraturevalidatethemodelandhighlightitsrelevancetothedesignofadvanced
thermal systems,biomedicaldevices,andmicrofluidicapplications. Thisstudyoffersarobustmathematical
frameworkforanalyzinghybridnanofluidbehaviorundercomplexphysicalconditions.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-10-09
Rubrique
Special Issue on “Applied Mathematics and Computing”(ICAMC-25)