Thermo-fluidic Behaviour of Maxwell - Type Hybrid Nano fluids under MHD and Radiative Effects with Wall Slip
Abstract
Mathematicalmodellingisvital forunderstandingandoptimizingNanofluiddynamics in
electroniccoolingsystems. Itenablesresearcherstopredictfluidbehavior,enhanceheattransferperfor
mance,anddesignmoreefficientsystemswithfewerexperimentaltrials.Thisstudypresentsacomprehensive
computational analysis of hybridgraphene-basedNanofluidflowover a stretching surface, incorporating
magnetohydrodynamic(MHD)effects,nonlinearthermalradiation,chemicalreactions,andviscoelasticprop
erties. ThehybridNanofluidcomprisesgrapheneoxideandcoppernanoparticlesdispersedinaNewtonian
basefluid. TheBuongiornomodel accounts fornanoparticlemigrationdue toBrownianmotionandther
mophoresis,while theMaxwellmodel capturesViscoelasticbehavior.Second-order slipboundaryconditions
areimposedtoreflectmicroscaleeffectsrelevantinbiomedicalandmicrofluidicsystems.
Thegoverningpartial differential equations formomentum, energy, andnanoparticleconcentrationare
transformedintoasystemofcoupled,nonlinearordinarydifferentialequationsusingsimilaritytransformations.
Thesearesolvednumericallyviatheshootingmethodcombinedwiththefourth-orderRunge–Kuttaalgorithm
andNewton’siteration.Tovalidatetheresults,MATLAB’sbuilt-insolverbvp4cisalsoemployed.
Theimpactofvariousdimensionlessparameters, includingthemagneticfieldstrength,Weissenbergnum
ber, radiationparameter,Brownianmotion, thermophoresis,andslipcoefficients, issystematicallyanalyzed.
Findings indicatethatanincreasedmagneticfieldreducesfluidvelocityviatheLorentz forceandthickens
thethermalboundarylayer.Thermalradiationelevatesfluidtemperature,whileslipeffectsreducewallshear
stressandheattransferrates.Enhancedthermophoresisleadstoincreasednanoparticlemigration, influencing
bothtemperatureandconcentrationfields.
Comparisonswithexistingliteraturevalidatethemodelandhighlightitsrelevancetothedesignofadvanced
thermal systems,biomedicaldevices,andmicrofluidicapplications. Thisstudyoffersarobustmathematical
frameworkforanalyzinghybridnanofluidbehaviorundercomplexphysicalconditions.
Downloads
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).