ANÁLISE NÃO LINEAR DE TRELIÇAS COM A FORMULAÇÃO CORROTACIONAL DE ELEMENTOS FINITOS E DIFERENTES MEDIDAS DE DEFORMAÇÕES
Abstract
Trusses when subjected to heavy loads on their nodes present geometric nonlinearity, which occurs when the relation between displacement and strain are no longer linear. Finite Element co-rotational formulation to solve the nonlinear problem is usually done using Engineering strain. However, there are other strain measures that can be used in the formulation and lead to different results, highlighting the strains of Green-Lagrange, Biot and Almansi. This paper presents a numerical and computational model for trusses analysis with geometric nonlinearity. The equilibrium paths of plane truss problems are obtained for the different strain measurements, and the numerical results are compared. The system of nonlinear equations was solved by the incremental and iterative process of standard Newton-Raphson associated with the Linear Arc-Length path-following technique. The computational code was implemented in the Scilab software.
Downloads
References
BATHE, K. J. Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe, 2006.
BATOZ, J. L.; DHAT, G. Incremental displacement algorithms for nonlinear problems. International Journal for Numerical Methods in Engineering, v. 14, n. 8, p. 1262-1267, 1979.
BERGAN, P. G., HORRIGMOE, G., BRAKELAND, B.; SOREIDE, T. H. Solution techniques for non− linear finite element problems. International Journal for Numerical Methods in Engineering, v. 12, n. 11, p. 1677-1696, 1978.
BORST, R.; CRISFIELD, M. A.; REMMERS, J. J.; VERHOOSEL, C. V. Nonlinear Finite Element Analysis of Solids and Structures. 2. ed. Chichester, West Sussex, UK: John Wiley and Sons Ltd, 2012.
CHAN, S. L. Geometric and material non-linear analysis of beam-columns and frames using the minimum residual displacement method. International Journal for Numerical Methods in Engineering, v. 26, n. 12, p. 2657-2669, 1988.
CRISFIELD, M. A. Non-Linear Finite Element Analysis of Solids and Structures. Volume 1: Essentials. New York: John Wiley & Sons Ltd., 1991.
KRENK, S.; HEDEDAL, O. A dual orthogonality procedure for non-linear finite element equations. Computer Methods in Applied Mechanics and Engineering, v. 123, n. 1-4, p. 95-107, 1995.
LACERDA, E. G. M. Análise não linear de treliças pelo método dos elementos finitos posicional. 2014. Dissertação (Mestrado em Engenharia Civil) - Programa de Pós-graduação em Engenharia Civil, Universidade Federal do Rio Grande do Norte, Natal, 2014.
LACERDA, E. G. M.; MACIEL, D. N.; SCUDELARI, A. C. Geometrically static analysis of trusses using the arc-length method and the positional formulation of Finite Element Method. In: XXXV Iberian Latin-American Congress on Computational Methods in Engineering, 2014. Anais... Evandro Parente Jr (Editor), ABMEC, Fortaleza, CE, Brazil, 2014.
MATIAS, W. T. El control variable de los desplazamientos en el análisis no lineal elástico de estructuras de barras. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Inggeniería, v. 18, n. 4, p. 549-572, 2002.
MAXIMIANO, D. P.; SILVA, A. R. D.; SILVEIRA, R. A. M. Iterative strategies associated with the normal flow technique on the nonlinear analysis of structural arches. Revista Escola de Minas (Impresso), v. 67, n. 2, p. 143-150, 2014.
MENIN, R. C. G. Aplicação da descrição cinemática co-rotacional na análise não-linear geométrica de estruturas discretizadas por elementos finitos de treliças, vigas e cascas. 2006. Tese (Doutorado) - Departamento de Engenharia Civil e Ambiental, Faculdade de Tecnologia, Universidade de Brasília, Brasília, 2006.
POWELL, G.; SIMONS, J. Improved iteration strategy for nonlinear structures. International. Journal for Numerical Methods in Engineering, v. 17, n. 10, p. 1455-1467, 1981.
RAMM, E. Strategies for tracing the non-linear response near limit-points, nonlinear finite element analysis in structural mechanics. Wunderlich, W. (ed.). Berlin: Springer-Verlag, p. 63-89, 1981.
RIKS, E. The application of Newton's methods to the problems elastic stability. Journal of Applied Mechanics, v. 39, n. 4, p. 1060-1065, 1972.
RIKS, E. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures, v. 15, n. 7, p. 529-551, 1979.
SCILAB version 6.0.2. ESI Group, 2019.
SOUZA, L. A. F.; CASTELANI, E. V.; SHIRABAYASHI, W. V. I.; MACHADO, R. D. Métodos iterativos de terceira e quarta ordem associados à técnica de comprimento de arco linear. Ciência & Engenharia, v. 26, n. 1, p. 39-49, 2017.
SOUZA, L. A. F.; CASTELANI, E. V.; SHIRABAYASHI, W. V. I.; ALIANO FILHO, A.; MACHADO, R. D. Trusses Nonlinear Problems Solution with Numerical Methods of Cubic Convergence Order. TEMA (São Carlos), v. 19, n. 1, p. 161-179, 2018
VASIOS, N. Nonlinear Analysis of Structures: The Arc Length Method: Formulation, Implementation and Applications. Harvard University, Massachusetts, 2015.
YANG, Y. B.; KUO, S. R. Theory & Analysis of Nonlinear Framed Structures. Singapore: Prentice - Hall, 1994.
YAW, L. L. 2D Co-rotational Truss Formulation. Walla Walla University, 2009.
WRIGGERS, P.; WAGNER, W.; MIEHE, C. A quadratically convergent procedure for the calculation of stability points in finite element analysis. Computer methods in applied mechanics and engineering, v. 70, n. 3, p. 329-347, 1988.
Os autores podem manter os direitos autorais pelo seu trabalho, mas repassam direitos de primeira publicação à revista. A revista poderá usar o trabalho para fins não-comerciais, incluindo direito de enviar o trabalho em bases de dados de Acesso Livre.