EFEITO DA ADIÇÃO DE MICRO E MACROFIBRAS DE POLIPROPILENO (PP) ÀS FIBRAS DE AÇO SOBRE O COMPORTAMENTO MECÂNICO DO CONCRETO

Desempenho do concreto reforçado com fibras hibridizadas

  • Vladimir José Ferrari UEM
  • Anderson Gobbi Drun

Abstract

In this research, the fresh and hardened properties of a hybrid FRC were analyzed by combining polypropylene (PP) microfibres and macrofibers with long steel fibers. The objective was to develop a FRC with good energy absorption capacity in the post-peak phase of loading. Five CRF groups with different fiber contents were analyzed. The slump test was used to evaluate the working conditions of the mixtures. Tests were performed on cylindrical specimens to obtain the axial compression strength, static modulus of elasticity and dynamic. This latter property is obtained by testing via impulse excitation technique. Flexural tests in prismatic specimens were performed using an Instron/Emic equipment to obtain the resistances and tenacity. The results showed significant decrease in the values ​​of compressive strength and modulus. The FRCs presented good loading capacity after matrix cracking and the steel fibers acted more effectively at low deformation levels, unlike PP fibers that had better performance at higher deformation levels. The behavior of the different fibers at different loading stages allowed to obtain a material with high energy absorption capacity when compared to FRC containing only steel fibers.

Downloads

Download data is not yet available.

References

AHMED, S.F.U.; MAALEJ, M. Tensile strain behavior of hybrid steel-polyethylene fibre reinforced cementitious composites. Construction and building materials, 23, 96-106, 2009.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 67: Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 1998.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 248, Determinação da composição granulométrica, Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 52: Agregado miúdo – Determinação da massa específica e massa específica aparente, Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 53: Agregado graúdo – Determinação da massa específica, massa específica aparente e absorção de água, Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 45: Agregados – Determinação da massa unitária e do volume de vazios, Rio de Janeiro, 2006.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto – Ensaio de compressão de corpos-de-prova cilíndricos, Rio de Janeiro, 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8522: Concreto – Determinação do módulo estático de elasticidade à compressão, Rio de Janeiro, 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12655: Concreto de cimento Portland – Preparo, controle, recebimento e aceitação – Procedimento, Rio de Janeiro, 2015.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. E1876-15: Standard Test Method for Dynamic Young´s Modulus, Shear Modulus, and Poisson´s Ratio by Impulse Excitation of Vibration. West Conshohocken, PA.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. C1609/C1609M: Standard Test Method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken, 2019.

BANTHIA, N.; NANDAKUMAR, N. Crack growth resistance of hybrid fiber reinforced cement composites. The University of British Columbia, Vancouver, Canada, 2001.

BRITISH STANDARDS INSTITUTION. BS 8110-2: Structural use of concrete – Part 2: Code of practice for special circumstances. London, 2001.

CÁCERES, A. R. E.; FIGUEIREDO, A. D.; MONTE, R. Avaliação do comportamento do concreto com reforço híbrido de fibras. In: 55º Congresso Brasileiro do Concreto Gramado (RS), 2013.

CÁRNIO, M. A. Aspectos gerais sobre o uso do concreto reforçado com fibras no Brasil: produção, projeto, tecnologia, normalização. Concreto & Construções, 87, 2017.

DAWOOD, E. T.; RAMLI, M. Contribution of hybrid fibers on the hybrid fibers on the properties of high strength concrete having high workability. Science Direct, 2011.

FERRARI V. J., HANAI, J. B., SOUZA, R. A. Flexural strengthening of reinforcemente concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP), Construction and Building Materials, 48, 485-498, 2013.

JAPAN SOCIETY OF CIVIL ENGINEERS. JSCE SF4: Method of tests for flexural strength and flexural toughness of steel fiber reinforced concrete. Part III-2. Concrete Library International. n.3, 58-61, 1984.

KAWAMATA, A.; MIHASHI, H. Fukuyama, H. Properties of hybrid fiber reinforced cement-based composites. Journal of Advanced Technology, 1 (3), 283-290, 2003.

LYNDON, F. D.; BALADRAN, R. V. Some observations on elastic properties of plain concrete, Cement and Concrete Research, v.16, n.3, p. 314-324, 1986.

MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: Microestrutura, propriedades e materiais. 2 ed., Editora Pini. São Paulo, 1994.

NEVILLE, A. M. Propriedades do concreto, Editora Pini. São Paulo, 1982.

QIAN, C; STROEVEN, P. Development of hybrid polypropylene-steel fiber-reinforced concrete. Cement and Concrete research, 2000.

TAERWE, L.; GYSEL, A. V. J. Stress-strain response of high strength concrete and application of the existing models. Research Journal of Applied Sciences, Engineering and Technology, 22 (8), 695–704, 1996.

ZHANG, M. H.; SHARIF, M. S. H.; LU, G. Impact resistance of high-strength fiber-reinforced concrete. Magazine of Concrete Research Journal, 59 (3), 199-210, 2007.
Published
2022-03-07
How to Cite
Ferrari, V. J., & Gobbi Drun, A. (2022). EFEITO DA ADIÇÃO DE MICRO E MACROFIBRAS DE POLIPROPILENO (PP) ÀS FIBRAS DE AÇO SOBRE O COMPORTAMENTO MECÂNICO DO CONCRETO. Revista Tecnológica, 30(1), 176-196. https://doi.org/10.4025/revtecnol.v30i1.56092