Optimizing production in machining of hardened steels using response surface methodology

Autores

  • Paulo Henrique da Silva Campos Universidade Federal de Itajubá
  • Vinicius de Carvalho Paes Universidade Federal de Itajubá http://orcid.org/0000-0003-0863-6743
  • Ernany Daniel de Carvalho Gonçalves Universidade Federal de Itajubá
  • João Roberto Ferreira Universidade Federal de Itajubá
  • Pedro Paulo Balestrassi Universidade Federal de Itajubá http://orcid.org/0000-0003-2772-0043
  • João Paulo Davim Tavares da Silva Universidade de Aveiro http://orcid.org/0000-0002-5659-3111

DOI:

https://doi.org/10.4025/actascitechnol.v41i1.38091

Palavras-chave:

design of experiments, response surface methodology, production optimization

Resumo

This paper presents the modeling of tool life and surface roughness for machining AISI 52100 steel with a hardness of 50 HRC through Design of Experiments and Response Surface Methodology (RSM) with a view to enhance the quality and productivity. Knowing that the tool life and surface roughness are factors that influence the quality of the product, this study used the statistical tool of RSM in the search of factors that better determine optimal models. The models obtained prioritize the product quality and the cutting productivity. Results from Analysis of Variance demonstrated that the mathematical models elaborated allowed the prediction of surface roughness parameters´ values and tool life (T) with a precision of 95% confidence interval and a coefficient of determination above 94%. The wiper geometry of the tool led to the achievement of low average surface roughness (Ra) ranging from 0.2 to 0.4 µm with relatively high advances (0.2-0.4 mm rev-1) and maximum height of the profile surface roughness (Rt) in the range of 1.4 to 2.8 µm, without making use of the cutting fluid.

Downloads

Não há dados estatísticos.

Biografia do Autor

Paulo Henrique da Silva Campos, Universidade Federal de Itajubá

Industrial Engineering and Management Institute

Vinicius de Carvalho Paes, Universidade Federal de Itajubá

Bachelor degree in Computer Science (2008) and master degree in Computer and Technology Science from Universidade Federal de Itajubá. Founder of information technology companies primarily focused on SaaS (software as a service). Practical and professional experience in project management, server management, network management, information security, programming, server high availability, database, web analytics, search engine optimization, web crawler, web indexer, return of investment, data mining, artificial intelligence. PhD student in Industrial Engineering at UNIFEI and researcher at NOMATI with thesis focused on Design of Experiments on Artificial Neural Network´s Parameterization for Nonlinear Problems Solution.

Ernany Daniel de Carvalho Gonçalves, Universidade Federal de Itajubá

Industrial Engineering and Management Institute

João Roberto Ferreira, Universidade Federal de Itajubá

Industrial Engineering and Management Institute

Pedro Paulo Balestrassi, Universidade Federal de Itajubá

Industrial Engineering and Management Institute

João Paulo Davim Tavares da Silva, Universidade de Aveiro

Department of Mechanical Engineering

Downloads

Publicado

2019-05-29

Como Citar

Campos, P. H. da S., Paes, V. de C., Gonçalves, E. D. de C., Ferreira, J. R., Balestrassi, P. P., & Silva, J. P. D. T. da. (2019). Optimizing production in machining of hardened steels using response surface methodology. Acta Scientiarum. Technology, 41(1), e38091. https://doi.org/10.4025/actascitechnol.v41i1.38091

Edição

Seção

Estatí­stica

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

Artigos mais lidos pelo mesmo(s) autor(es)