Existence and multiplicity of solutions for a $(p(x),q(x))$-Laplacian Steklov problem
Abstract
Using variational methods, we prove in different cases the existence and multiplicity of solutions for the following Steklov problem
\begin{equation*}
\left\{
\begin{array}{ll}
\triangle_{p(x)}u+\triangle_{q(x)}u=0 & \text{in } \Omega, \\
(|\nabla u|^{p(x)-2}+|\nabla u|^{q(x)-2})\frac{\partial u}{\partial\nu}+|u|^{p(x)-2}u+|u|^{q(x)-2}u=\lambda( |u|^{r(x)-2}u-\varepsilon|u|^{s(x)-2}u ) & \text{on } \partial\Omega,
\end{array} \right.
\end{equation*}
where $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain with smooth boundary $\partial\Omega$ and $\nu$ is the unit outward normal vector on $\partial\Omega$. $p, \; q, \; r,\; s: \overline{\Omega} \mapsto (1,+\infty)$ are continuous functions and $\varepsilon \geq 0$.
Downloads
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



