Existence and multiplicity of solutions for a $(p(x),q(x))$-Laplacian Steklov problem
Resumen
Using variational methods, we prove in different cases the existence and multiplicity of solutions for the following Steklov problem
\begin{equation*}
\left\{
\begin{array}{ll}
\triangle_{p(x)}u+\triangle_{q(x)}u=0 & \text{in } \Omega, \\
(|\nabla u|^{p(x)-2}+|\nabla u|^{q(x)-2})\frac{\partial u}{\partial\nu}+|u|^{p(x)-2}u+|u|^{q(x)-2}u=\lambda( |u|^{r(x)-2}u-\varepsilon|u|^{s(x)-2}u ) & \text{on } \partial\Omega,
\end{array} \right.
\end{equation*}
where $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain with smooth boundary $\partial\Omega$ and $\nu$ is the unit outward normal vector on $\partial\Omega$. $p, \; q, \; r,\; s: \overline{\Omega} \mapsto (1,+\infty)$ are continuous functions and $\varepsilon \geq 0$.
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



