Existence and multiplicity of solutions for a $(p(x),q(x))$-Laplacian Steklov problem

  • belhadj belhadj Karim Nonlinear analysis
  • Abdessamad Lakhdi University Moulay Ismail FST Errachidia
  • Abdellah Zerouali Regional Centre of Trades of Education and Training, Oujda, Morocco

Resumo

Using variational methods, we prove in different cases the existence and multiplicity of solutions for the following Steklov problem
\begin{equation*}
\left\{
\begin{array}{ll}
\triangle_{p(x)}u+\triangle_{q(x)}u=0 & \text{in } \Omega, \\
(|\nabla u|^{p(x)-2}+|\nabla u|^{q(x)-2})\frac{\partial u}{\partial\nu}+|u|^{p(x)-2}u+|u|^{q(x)-2}u=\lambda( |u|^{r(x)-2}u-\varepsilon|u|^{s(x)-2}u ) & \text{on } \partial\Omega,
\end{array} \right.
\end{equation*}
where $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain with smooth boundary $\partial\Omega$ and $\nu$ is the unit outward normal vector on $\partial\Omega$. $p, \; q, \; r,\; s: \overline{\Omega} \mapsto (1,+\infty)$ are continuous functions and $\varepsilon \geq 0$.

Downloads

Não há dados estatísticos.
Publicado
2025-12-05
Seção
Artigos