On sextic integral bases using relative quadratic extention
Resumen
Let $K=\mathbb{Q}(\theta)$ be a cubic number filed and $P(X)=X^3-aX-b$ ($a,b$ in $\ZZ$), the monic irreducible polynomial of $\theta$. In this paper we give a sufficient conditions on $a$,$b$ which ensure that $\theta$ is a power basis generator, also we give conditions on relative quadratic extension to be monogenic. As a consequence of this theoretical result we can reach an integral basis of some sextic fields which Neither algebraically split nor arithmetically split.Descargas
La descarga de datos todavía no está disponible.
Publicado
2019-03-10
Número
Sección
Articles
Derechos de autor 2019 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).