On sextic integral bases using relative quadratic extention

  • Mohammed Sahmoudi Faculty of Sciences Dhar El Mahraz LAGA Laboratory
  • Soullami Abderazak Faculty of Sciences Dhar El Mahraz Department of Mathematics

Resumen

Let $K=\mathbb{Q}(\theta)$ be a cubic number filed and $P(X)=X^3-aX-b$ ($a,b$ in $\ZZ$), the monic irreducible polynomial of $\theta$. In this paper we give a sufficient conditions on $a$,$b$ which ensure that $\theta$ is a power basis generator, also we give conditions on relative quadratic extension to be monogenic. As a consequence of this theoretical result we can reach an integral basis of some sextic fields which Neither algebraically split nor arithmetically split.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mohammed Sahmoudi, Faculty of Sciences Dhar El Mahraz LAGA Laboratory
LAGA Laboratory, FSDMFES.
Publicado
2019-03-10
Sección
Articles