On sextic integral bases using relative quadratic extention

  • Mohammed Sahmoudi Faculty of Sciences Dhar El Mahraz LAGA Laboratory
  • Soullami Abderazak Faculty of Sciences Dhar El Mahraz Department of Mathematics

Résumé

Let $K=\mathbb{Q}(\theta)$ be a cubic number filed and $P(X)=X^3-aX-b$ ($a,b$ in $\ZZ$), the monic irreducible polynomial of $\theta$. In this paper we give a sufficient conditions on $a$,$b$ which ensure that $\theta$ is a power basis generator, also we give conditions on relative quadratic extension to be monogenic. As a consequence of this theoretical result we can reach an integral basis of some sextic fields which Neither algebraically split nor arithmetically split.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Mohammed Sahmoudi, Faculty of Sciences Dhar El Mahraz LAGA Laboratory
LAGA Laboratory, FSDMFES.
Publiée
2019-03-10
Rubrique
Articles