Effectiveness of an algorithm to identify early clinical deterioration in adult inpatient units

Keywords: Clinical deterioration, Inpatient care units, Indicators of health services

Abstract

Objective: To evaluate the effectiveness of an algorithm for early identification of clinical deterioration in adult inpatient units. Method: Retrospective cohort study conducted in a philanthropic hospital in northern of the State of Paraná. The study analyzed the trend of indicators related to productivity, production, and quality. It adopted an alpha error of 5%. Results: The production indicators showed a decreasing trend in the occupancy rate, both of the beds destined for elective treatments and those reserved for urgency, and an increasing trend in the absolute number of hospitalizations and the number of patients per day. The productivity indicators showed a steady trend in the bed renewal index. Regarding quality, there was a predominance of increasing trend in all rates (infection, sepsis, and mortality). Conclusion: The results showed that the algorithm was effective since there was an improvement in production indicators, which showed a decreasing trend in the occupancy rate, both in elective and emergency beds, and productivity indicators, where there was a stationary trend in the bed renewal index.

Downloads

Download data is not yet available.

Author Biographies

Jhessica Pedroso Alves, Universidade Estadual de Londrina

Nurse.  Master in nursing. University Hospital of Londrina. Londrina, Paraná, Brazil. 

Maria do Carmo Fernandez Lourenço Haddad, Universidade Estadual de Londrina

Nurse. Doctor of Nursing. Department of Nursing, State University of Londrina. Londrina, Paraná, Brazil.

Tatiana da Silva Melo Malaquias, Universidade Estadual do Centro-Oeste

Nurse. Doctor of Nursing. Department of Nursing, State University of Centro-Oeste, Guarapuava, Paraná, Brazil.

Mariana Angela Rossaneis, Universidade Estadual de Londrina

Nurse. Doctor of Nursing. University Hospital of Londrina. Londrina, Paraná, Brazil.

Cremilde Aparecida Trindade Radovanovic, Universidade Estadual de Maringá

Nurse. Doctor of Nursing. Department of Nursing, State University of Maringá. Maringa, Paraná, Brazil.

Danielly Negrão Guassú Nogueira , Universidade Estadual de Londrina

Nurse. Doctor of Nursing. Department of Nursing, State University of Londrina. Londrina, Paraná, Brazil.

References

Lavoie P, Pepin J, Alderson M. Defining patient deterioration through acute care and intensive care nurses' perspectives. Nurs Crit Care. 2016;21:68-77. doi: https://doi.org/10.1111/nicc.12114

Morgan RJM, Williams F, Wright MM. An Early Warning Scoring System for detecting developing critical illness. Clin Intensive Care. 1997;8(2):100. Available from: https://www.scienceopen.com/document?vid=28251d22-8476-40a6-916d-1a34796816e4

Gondim ES, Gomes EB, Matos JHF, Pinto SL, Oliveira CJ, Parente AMPG. Technologies used by nursing to predict clinical deterioration in hospitalized adults: a scoping review. Rev. Bras. Enferm. 2022;75(5):e20210570. doi: https://doi.org/10.1590/0034-7167-2021-0570

Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified early warning score in medical admissions. QJM. 2001;94(10):521-26. Available from: http://qjmed.oxfordjournals.org/content/94/10/521.long

Baker KF, Hanrath AT, Schim van der Loeff I, Kay LJ, Back J, Duncan CJ. National Early Warning Score 2 (NEWS2) to identify inpatient COVID-19 deterioration: a retrospective analysis. Clin Med, 2021;21(2):84-89. doi: https://doi.org/10.7861/clinmed.2020-0688

Zhu Y, Chiu YD, Villar SS, Brand JW, Patteril MV, Morrice DJ, Clayton J, Mackay JH. Dynamic individual vital sign trajectory early warning score (DyniEWS) versus snapshot national early warning score (NEWS) for predicting postoperative deterioration. Resuscitation. 2020; 57:176-184. doi: https://doi.org/10.1016/j.resuscitation.2020.10.037

Nascimento JSG, Macedo GO, Borges GB. Poder preditivo de uma escala de alerta precoce para deterioração clínica de pacientes críticos. Rev. Enferm. UFSM. 2020;10(e5). doi: https://doi.org/10.5902/2179769238300

Cipriano ESV, Salgado BS, Oliveira MS, Aguiar BGC. Implantação do Score de deterioração clínica (MEWS) em um hospital provado da cidade do Rio de Janeiro e seus respectivos resultados. Enferm. Brasil. 2018;17(1):34-42. Available from: https://portalatlanticaeditora.com.br/index.php/enfermagembrasil/article/view/2241/344

Neumann VSR, Silva RFA, Roso I. Elaboração de algoritmo para a escolha do banho do paciente coronariopata. Glob Acad Nurs. 2021;2(Spe.3):e161. doi: https://doi.org/10.5935/2675-5602.20200161

Alves TF, Tourinho FSV, Andrade SR, Reisdorfer N, Fermo VC. Regulamentação das tecnologias em saúde no Brasil: uma pesquisa documental. Cienc Cuid Saúde. 2022;200. doi: https://doi.org/10.4025/ciencuidsaude.v20i0.57685

Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-9. doi: https://doi.org/10.1016/j.jclinepi.2007.11.008

Prytherch DR, Smith GB, Schmidt PE, Featherstone PE. ViEWS—Towards a national early warning score for detecting adult inpatient deterioration. Resuscitation. 2010; 81. doi: https://doi.org/10.1016/j.resuscitation.2010.04.014

Scherer JS, Pereira JS, Debastiane MS, Bica CG. Beyond technology: Can artificial intelligence support clinical decisions in the prediction of sepsis?. Rev. Bras. Enferm. 2022;75(5):e20210586. doi: https://doi.org/10.1590/0034-7167-2021-0586

Rede Interagencial de Informação para a Saúde (RIPSA). Indicadores e dados básicos para a saúde no Brasil (IDB): Conceitos e critérios. 2017. Available from: http://www.ripsa.org.br/vhl/indicadores-e-dados-basicos-para-a-saude-no-brasil idb/conceitos-e-criterios/

Tavera CAR, Ortiz JH, Khalaf OI, Ríos AP. Business Intelligence: Evolução dos Negócios após a Indústria 4.0. Sustentabilidade. 2021;13:10026. doi: https://doi.org/10.3390/su131810026

Montenegro SMSL, Miranda CH. Evaluation of the performance of the modified early warning score in a Brazilian public hospital. Rev Bras Enferm. 2019;72(6):1428-34. doi: https://doi.org/10.1590/0034-7167-2017-0537

Wu CL, Kuo CT, Shih SJ, Chen JC, Lo YC, Yu HH, Huang MD, Sheu WH, Liu SA. Implementation of an Electronic National Early Warning System to Decrease Clinical Deterioration in Hospitalized Patients at a Tertiary Medical Center. Int J Environ Res Public Health. 2021;18(9):4550. doi: https://doi.org/10.3390/ijerph18094550

Goh KH, Wang L, Yeow AYK, Poh H, Li K, Yeow JJL, Tan GYH. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun. 2021;12(1):711. doi: https://doi.org/10.1038/s41467-021-20910-4

Silva JPT. Análise da eficiência de hospitais regionais em um estado do Nordeste. Saúde debate. 2019; 43(120). doi: https://doi.org/10.1590/0103-1104201912006

Botega LA, Andrade MV, Guedes GR. Perfil dos hospitais gerais do Sistema Único de Saúde. Rev. Saúde Públic. 2020;54(81). doi: https://doi.org/10.11606/s1518-8787.2020054001982

Lang A, Simmonds M, Pinchin J, Sharples S, Dunn L, Clarke S, Bennett O, Wood S, Swinscoe C. The Impact of an Electronic Patient Bedside Observation and Handover System on Clinical Practice: Mixed-Methods Evaluation. JMIR Med Inform. 2019;7(1):e11678. doi: https://doi.org/10.2196/11678

Gerry S, Bonnici T, Birks J, Kirtley S, Virdee PS, Watkinson PJ, Collins GS. Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. BMJ. 2020;369:m1501. doi: https://doi.org/10.1136/bmj.m1501

Published
2023-04-03
How to Cite
Pedroso Alves, J., Fernandez Lourenço Haddad, M. do C., da Silva Melo Malaquias, T., Rossaneis, M. A., Trindade Radovanovic, C. A., & Negrão Guassú Nogueira , D. (2023). Effectiveness of an algorithm to identify early clinical deterioration in adult inpatient units. Ciência, Cuidado E Saúde, 22. https://doi.org/10.4025/ciencuidsaude.v22i0.65803
Section
Original articles