ESTUDO DO COMPORTAMENTO DE VIGAS DE CONCRETO ARMADAS A FLEXÃO COM ARMADURAS NÃO-METÁLICAS DE GFRP
Abstract
This work is based on the replacement of conventional steel bars by GFRP (Glass Fiber Reinforced Polymer) bars for reinforced concrete structures. Concrete beams reinforced with steel bars were designed according to the ACI 318 (ACI, 2019) and concrete beams reinforced with GFRP bars by using ACI 440.1R (ACI, 2015), in order to study, comparatively, the load carrying capacity and the failure mode of the elements. Price quotations were made for the comparison of the execution costs of the beams. It was possible to conclude that, with equivalent reinforcement ratios, it was verified that the use of GFRP bars results in higher resistance capacities, ranging from 177 to 113% for the same cross-sections designed with conventional steel. When considering the same GFRP and steel bars diameters, beams reinforced with steel presented a 20% higher strength than the ones with GFRP bars. Concerning to the failure mode of the beams, the conventional steel bars yields, while the GFRP bars is based on the tensile bars rupture or on the concrete crushing. Finally, for short-term analysis, the costs of using GFRP reinforcing bars are higher than conventional steel bars. However, it is necessary to evaluate the maintenance costs of the structures, since the GFRP concrete reinforced beams are more resistant to environmental aggressive conditions and presents lower maintenance costs when taking into account the service life of the structures.
Downloads
References
AMERICAN CONCRETE INSTITUTE. ACI COMMITTEE 440.R. Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures. Farmington Hills, 2007.
AMERICAN CONCRETE INSTITUTE. ACI COMMITTEE 440.1R. Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. Farmington Hills, 2015.
AMERICAN CONCRETE INSTITUTE. ACI 318. Building code requirements for reinforced concrete. Farmington Hills, 2019.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto armado. Rio de Janeiro, 2014.
CAMACHO, L. F. C. A utilização de varões de GFRP nas estruturas de betão armado. Dissertação de Mestrado, Universidade da Madeira, Funchal, 2011.
OWENS CORNING. Glass Fiber Reinforced Polymer (GFRP) Rebar – Aslan 100 series. Acessado em 30/11/2019. Web Page http://aslanfrp.com/resources/Aslan-100-GFRP-Rebar-data-sheet.pdf.
JOSÉ, R. N. F. Automatização do dimensionamento de elementos estruturais em betão armado com GFRP. Dissertação de Mestrado, Universidade da Madeira, Funchal, 2013.
PILAKOUTAS, K.; NEOCLEOUS, K.; GUADAGNINI, M.; MATTHYS, S. Design guidelines for FRP reinforced concrete structures. Structures and buildings, v. 164, p. 255-263, 2013.
TAVARES, D. H. Análise teórica e experimental de vigas de concreto armadas com barras não metálicas de GFRP. Dissertação de Mestrado, Universidade de São Paulo, São Carlos, 2006.
WANG, H.; BELARBI, A. Flexural Behavior of Fiber-Reinforced Concrete Beams Reinforced with FRP Rebars. In: International Symposium of Fiber-Reinforced Polymer Reinforcement for Concrete Structures, 7., v. 230, p. 895-914, Kansas, 2005.
Os autores podem manter os direitos autorais pelo seu trabalho, mas repassam direitos de primeira publicação à revista. A revista poderá usar o trabalho para fins não-comerciais, incluindo direito de enviar o trabalho em bases de dados de Acesso Livre.