Análise de Sentimento na Área de Gestão e Negócios: Uma Visão Geral e Proposta de Agenda de Pesquisa

Abstract

O objetivo deste estudo é investigar o conteúdo de artigos publicados em periódicos entre os anos de 2018 e 2022 sobre análise de sentimento aplicada na área de gestão e negócios. Nosso estudo está fundamentado na aprendizagem de memória, cultura e subcultura, propagandas e marcas. Por meio de um estudo bibliométrico, analisamos 186 artigos publicados em periódicos da área de gestão e negócios. Neste processo, foi definido o recorte temporal de 2018 a 2022 para identificar os estudos atuais sobre análise de sentimento e mostrar como esse campo de pesquisa evoluiu. Apresentamos o panorama global das pesquisas científicas realizadas na área de gestão e negócios utilizando a técnica de análise de sentimento. Diversas abordagens foram destacadas neste estudo, explorando o conteúdo gerado por consumidores nas mídias sociais, destacando o setor hoteleiro, indústria alimentícia, instituições de ensino, hospital entre outros. E ainda, insights para pesquisas futuras que possam envolver outras temáticas além das que foram encontradas neste estudo bibliométrico. Esta pesquisa sugere que a técnica análise de sentimento seja aplicada em temas que ainda não a exploraram, como aprendizagem de memória, cultura e subcultura e propaganda e marcas.

Downloads

Download data is not yet available.

Author Biographies

Celyce de Sousa Gonçalves Lula, Universidade Federal de Goiás

Doutoranda em Administração pelo PPGADM/UFG. Mestre em Administração. Especialista em Gestão de Pessoas e Marketing. Graduada em Administração. Professora efetiva do Instituto Federal de Ciências e Tecnologia, IFG - Câmpus Inhumas, dedicação exclusiva. Membro associada ao ADMKT - Grupo de Ensino, Pesquisa e Extensão em Marketing e Data Analytics (https://adm.face.ufg.br). Realiza pesquisas com ênfase em Marketing, Comportamento do Consumidor, Cultura e Consumo e Bem-estar no trabalho.

Ricardo Limongi, Faculdade de Administração, Ciências Contábeis e Economia (FACE) na Universidade Federal de Goiás

Doutor em Administração na linha de Estratégias de Marketing pela EAESP/FGV, com estágio doutoral na Cornell University sob supervisão de Vithala Rao. Pós doutorado em Economia Comportamental aplicada ao Marketing pela UnB e Pós doutorado em Machine Learning aplicado ao Marketing pela UFRGS. Professor Adjunto IV na Universidade Federal de Goiás (UFG). Professor Permanente no Programa de Pós Graduação em Administração na UFG e UFU. Coordenador do MBA em Marketing Estratégico. Professor Visitante e coordenador do projeto interinstitucional de colaboração na Universidade Santiago do Chile (USACH). Lidera tema de pesquisa na Divisão de Marketing desde 2019 na Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) e desde 2021 no EMPRAD. Possui formação complementar em Estatística Espacial, Data Science e Machine Learning. Suas pesquisas já foram, indicadas e/ou premiadas, pela base de dados internacional Emerald (2015/2017) e eventos científicos como SEMEAD (2013) e EMA (2014/2018). Teve projetos aprovados em Editais Científicos pela Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) e CNPq. É membro do corpo editorial da PLOS One. Seus temas de interesse são: Desempenho Aplicado ao Marketing, nível empresa ou consumidor; Marketing Analytics e Machine Learning. Coordena o ADMKT - Laboratório de Pesquisa em Marketing e Data Analytics (https://admkt.face.ufg.br), certificado pelo CNPq, desde o ano de 2012.

References

Agarwal, S., Kumar, S.,& Goel, U. (2021). Social media and the stock markets from an emerging market perspective. Journal of Business Economics & Management. 22 (6), 1-21. https://doi.org/10.3846/jbem.2021.15619.

Ardia, D., Bluteau, K., & Boudt, K. (2019). Questioning the news about economic growth sparse forecasting using thousands of news based sentiment values. International Journal of Forecasting. 35(4), 1370-1386. https://doi.org/10.1016/j.ijforecast.2018.10.010.

Athanasiou, V., & Maragoudakis, M. (2017). A novel, gradient boosting framework for sentiment analysis in languages where nlp resources are not plentiful: a case study for modern greek. Algorithms. 34(10),1-21 https://doi.org/10.3390/a10010034.

Bacik, R., Fedorko, R., Gavurova, B., Olearova, M., & Rigelsky, M. (2020). Hotel marketing policy role of rating in consumer decision making. Marketing and Management of Innovations.2, 11-25. http://doi.org/10.21272/mmi.2020.2-01.

Bloh, J., Broeckel, T., Ozgun, B., & Sternberg, R. (2020). News data for entrepreneurship research an innovative approach to use big data on media coverage. Small Business Economic,55(3), 673-694. https://doi.org/10.1007/s11187-019-00209-x.

Cary, M. (2021). Down with the dogefather evidence of a cryptocurrency responding in real time to a crypto-tastemaker. Journal of Theoretical and Applied Electronic Commerce Research. 16(6), 2230-2240. https://doi.org/10.3390/jtaer16060123.

Choi, Y & Lee, H. (2017). Data properties and the performance of sentiment classification for electronic commerce applications. Inf Syst Front. (19), 993-1012. https://doi 10.1007/s10796-017-9741-7.

Ciechanowski, L., Jemielniak, D.,& Gloor, P. (2020). Tutorial ai research without coding the art of fighting without fighting data science for qualitative researchers. Journal of Business Research.117, 322-330. https://doi.org/10.1016/j.jbusres.2020.06.012.

Costa, A., Guerreiro, J., Moro, S., &Henriques, S. (2019). Unfolding the characteristics of incentivized online reviews. Journal of Retailing and Consumer Services.47, 272-281. https://doi.org/10.1016/j.jretconser.2018.12.006.

Dorfleitner, G.,& Hornuf, L. (2018). Dynamics of investor communication in equity crowdfunding. ElectronicMarkets. 28(4), 523-540. https://doi.org/10.1007/s12525-018-0294-5.

Fiok, K., Karwowski, W., Gutierrez, E. &Wilamowski, M. (2021). Analysis of sentiment in tweets addressed to a single domain-specific twitter account: C omparison of model performance and explainability of predictions. Expert Systems with Applications. 186, 1-11.https://doi-org/10.1016/j.eswa.2021.115771.

Fuentes-Medina, M. L., Hernández-Estário, E., & Morini-Marrero, S. (2018). Study of the critical success factors of emblematic hotels through the analysis of content of online opinions the case of the spanish tourist paradors. European Journal of Management and Business Economics. 27(1), 42-65. https://doi 10.1108/EJMBE-11-2017-0052.

Gang, Z., & Chenglin, L. (2021). Dynamic measurement and evaluation of hotel customer satisfaction through sentiment analysis on online reviews. Journal of Organizational and End User Computing. 33(6), 1-27. https://doi: 10.4018/JOEUC.20211101.

Hu, F. et al., (2021). Dealing with pandemics an investigation of the effects of covid19 on customers evaluations of hospitality services. Tourism Management. 85, 1-14. https://doi.org/10.1016/j.tourman.2021.104320.

Jindal, K., & Aron, R. (2021). A systematic study of sentiment analysis for social media data. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.048.

Joshi, A., Bhattacharyya, P.,& Carman, M., J. (2017). Automatic sarcasm detection: a survey.ACMComput. Surv. 50(5), 1-22. https://doi.org/10.1145/3124420.

Kaddoura, S., Itani, M.,& Roast, C. (2021). Analyzing the effect of negation in sentiment polarity of facebook dialectal arabic text. Applied Sciences, 11(11), 4768. https://doi.org/10.3390/app11114768.

Khalil, F., & Pipa, G. (2021). Is deep learning and natural language processing transcending the financial forecasting investigation through lens of news analytic process.Computational Economics. 1-25. https://doi.org/10.1007/s10614-021-10145-2.

Kim, A., Trimi, S. & Lee, S. G. (2021). Exploring the key success factors of films: a survival analysis approach. Service Busines.(15),613-638. https://doi.org/10.1007/s11628-021-00460-x.

Kontopoulos, E., Berberidis, C., Dergiades, T., &Bassiliades, N. (2013). Ontology-based sentiment analysis of twitter posts. Expert Systems with Applications, 40(10), 4065-4074. https://doi.org/10.1016/j.eswa.2013.01.001.

Kulkarni, K., Kalro, A. & Sharma, P. (2020). A typology of viral ad sharers using sentiment analysis. Journal of Retailing and Consumer Services. (53), 1-10.https://doi.org/10.1016/j.jretconser.2019.01.008.

Lee, H., Lee, N., Seo, H., & Song, M. (2019). Developing a supervised learning-based social media business sentiment index. The Journal of Supercomputing, (76), 3882-3897. https://doi.org/10.1007/s11227-018-02737-x.

Lewis, C., & Mehmet, M. (2019). Does the nps r reflect consumer sentiment a qualitative examination of the nps using a sentiment analysis approach. International Journal of Market Research.62(1),9-17. https://doi.org/10.1177/1470785319863623.

Li, J., & McCrary, R. (2019). Consumer communications and current events a crosscultural study of the change in consumer response to company social media posts due to the covid19 pandemic. Journal of Marketing Analytics. 1-11. https://doi.org/10.1057/s41270-021-00138-3

Luo, J., Huang, S., & Wang, R. (2021). A fine grained sentiment analysis of online guest reviews of economy hotels in china. Journal of Hospitality Marketing and Management.1(30), 71-95. https://doi.org/10.1080/19368623.2020.1772163.

Madasu, A., &Elango, S. (2020). Efficient feature selection techniques for sentiment analysis. Multimedia Tools and Applications. (79), 6613-6335. https://doi.org/10.1007/s11042-019-08409-z.

Mahmoud et al., (2021). A generational investigation and sentiment and emotion analyses of female fashion brand users on instagram in subsaharanafrica. Journal of Brand Management.28, 526-544. https://doi.org/10.1057/s41262-021-00244-8.

Mantyla, M. V., Graziotin, D., &Kuutila, M. (2018). The evolution of sentiment analysis - a review of research topics, venus and top cited papers. Computer Science Review, (27), 16-32. https://doi.org/10.1016/j.cosrev.2017.10.002.

Marr, B. (2019). What is unstructured data and why is it so important to businesses? An easy explanation for anyone. Retrieved from https://www.forbes.com/sites/bernardmarr/2019/10/16/what-is-unstructured-data-and-why-is-it-so-important-to-businesses-an-easy-explanation-for-anyone/?sh=73ea0d7415f6.

Melumad, S., Inman, J. J., & Pham, M. T. (2019). Selectively emotional: How smartphone use changes user-generated content. Journal of Marketing Research, 56(2), 259–275.https://doi.org/10.1177/0022243718815429.

Merigó, J. M., Pedrycz, W., Weber, R., &Sotta, C. (2018). Fifty years of information sciences: A bibliometric overview. Information Sciences.432, 245-268. https://doi.org/10.1016/j.ins.2017.11.054.

Mukherjee, P., Dutta, S., &Bruyn, A. (2022). Did clickbait crack the code on virality. National library of medicine.https://10.1007/s11747-021-00830-x.

Nave, M. Rita, P., &Guerreiro, J. (2018). A decision support system framework to track consumer sentiments in social media. Journal of Hospitality Marketing e Management. 6(27), 693-710. https://doi/full/10.1080/19368623.2018.1435327.

NG, C.Y.,&Law, K. M. Y. (2021) Assessing public opinions of products through sentiment analysis product satisfaction assessment by Sentiment analysis. organizational and end user computing.33(4),1-17.doi: 10.4018/JOEUC.20210701.oa6.

Nawaz, Z., Zhao, C., Nawaz, F., Ali, A., &Irshade, W. (2021). Role of artificial neural networks techniques in development of market intelligence a study of sentiment analysis of ewom of a womens clothing company. Journal of Theoretical and Applied Electronic Commerce Research.5(16), 1862-1876. https://doi.org/10.3390/jtaer16050104.

Page et al., (2021). The Prisma 2020 Statement: and updated guideline for reporting systematic reviews. (2021). Research Methods and Reporting. (371)71, 1-9. https://doi.org/10.1136/bmj.n71.

Park, Y.,&Javed, Y. (2020). Insights discovery through hidden sentiment in big data evidence from Saudi arabias financial sector. Journal of Asian Finance, Economics and Business.7(6), 457-464. https://doi.org/10.13106/jafeb.2020.vol7.no6.457.

Peng, H., Ma, Y., Poria, S., Li, Y., & Cambria, E. (2019). Phonetic-enriched text representation for chinese sentiment analysis with reinforcement learning. IEEE transactions on affective computing. (70). 88-88. https://doi.org/10.1016/j.inffus.2021.01.005.

Peres, C. K., Paladini, E. P., &Rachimi, I. (2021). Exploring the attributes of hotel service quality in florianopolisscbrazil an analysis of trip advisor reviews. Cogent Businesse Management.8(1), 1-19.https://doi.org/10.1080/23311975.2021.1926211.

Pitt, C., & Mulvey, M. (2018). Quantitative insights from online qualitative data an example from the health care sector. Psychology & Marketing. 35(12), 1010-1017. https://doi.org/10.1002/mar.21152.

Priya, S. S., Dixiti, S., K., Kabiraj, S. Priya, M. S., & Singh, A. K. (2021). What indian working class is saying about the covid 19 pandemic concerns and reactions. IndependentJournal of Management & Production.12(7), 1720-1738. https://doi.org/10.14807/ijmp.v12i7.1460.

Priyadarshini, I., & Cotton, C. (2021). A novel LSTM-CNN-grid search-based deep neural network for sentiment analysis. The JournalofSupercomputing.77, 13911-13932. https://doi.org/10.1007/s11227-021-03838-w.

Radaelli, M. R. R.; Goulart, G. S. &Astudello, M. R. V. Blended learning em educação básica e superior: Revisão de literatura das temáticas focadas nos alunos. Revista de Educação Pública. 31, 1-21. https://doi.org/10.29286/rep.v31ijan/dez.13397.

Razali et al., (2021). Opinion mining for national security: techniques, domain applications, challenges and research opportunities. Journal of Big Data. 8(150), 2-46. https://doi.org/10.1186/s40537-021-00536-5.

Resnik, S., & Koklic, M. K. (2018). User generated tweets about global green brands a sentiment analysis approach. Market Trziste. 30(2), 125-145. https://doi.org/10.22598/mt/2018.30.2.125.

Rita et al., (2021). Online dating apps as a marketing channel: a generational approach. European journal of management and business economics. 30(1), 1-17. doi 10.1108/EJMBE-10-2019-0192.

Samaggia, A., Riedel, B., & Ruggeri, A. (2020). Social media exploration for understanding food product attributes perception the case of coffee and health with twitter data. British Food Journal. 122(12), 3815-3835. https://doi.org/ 10.1108/BFJ-03-2019-0172.

Santos, C. L., Rita, P., & Guerreiro, J. (2018). Improving international attractiveness of higher education institutions based on text mining and sentiment analysis. International Journal of Education Management. 32(3), 431-477. https://doi.org/10.1108/IJEM-01-2017-0027.

Saura, J. R., Reyes-Menéndez, A., & Matos, N. (2021). Identifying startups business opportunities from ugc on twitter chatting an exploratory analysis. Journal Theor. Aplic. Elétron. Comer. Res.16(6),1929-1944. https://doi.org/10.3390/jtaer16060108

Schwaiger et al., (2021). Ur smart a tool for analyzing social media content. Information Systems and e-Business Management.19, 1275-1320. https://doi.org/10.1007/s10257-021-00541-4.

Segijin et al., (2019). Engaging with tv events on twitter: the interrelations between tv consumption, engagement actors and engagement content. Internet Research. 30(2), 381-402. https://doi.org/10.1108/INTR-08-2018-0389.

Sharma, T., Bjaj, A., &Sangwan, O. P., (2020). Emerging trends and applications of machine learning. IGI Global. 171-182. https://doi:10.4018/978-1-5225-9643-1.ch009.

Sheng, J., & Lan, H. (2019). Business failure and mass media analysis of media exposure in the context of delisting events. Journal of Business Research. (97), 316-323. https://doi.org/10.1016/j.jbusres.2018.01.055.

Singh, A., Shukla, N., & Misha, N. (2018). Social media data analytics to improve supply chain management in food industries. Transportation Research Part E: Logistic and Transportation Review, (114), 398-515. https://doi.org/10.1016/j.tre.2017.05.008.

Sohangir, S., Wang, D., Pomeranets, A. & Khoshhoftaar, T. (2018). Big Data: deep learning for financial sentiment analysis. Journal of Big Data, 5(3). https://doi.org/10.1186/s40537-017-0111-6.

Sokolov et al., (2018). Why employees leave russian companies analyzing online job reviews using text mining. Russian Management Journal. 16(4), 499-502. https://doi.org/10.21638/spbu18.2018.402.

Spettel, S., &Vagianos, D. (2019). Twitter analyser – how to use semantic analysis to retrieve an atmospheric image around political topics in twitter. Big data and Cognitive Computing. 3(38), 2-11. https://doi.org/10.3390/bdcc3030038.

Sudarsa, D., Kumar, S. P., &Jagajeevan, R. L. (2018). Sentiment analysis for social networks using machine learning techniques. Int. J. Eng. Technol, 7(2,32), 473-476. https://10.14419/ijet.v7i2.32.16271.

Taylor, C. (2019). Structured vs. unstructured data.Datamation. Retrieved from https://www.datamation.com/big-data/structured-vs-unstructured-data/.

Thirumaram et al., (2021). Covid19 in singapore and new zealand newspaper portrayal crisis management. Tourism Management Perspectives. (38), 1-11. https://doi.org/10.1016/j.tmp.2021.100812.

Tudoran, A., A. (2018). Why do internet consumers block ads new evidence from consumer opinion mining and sentiment analysis. Internet Research, 1(29),144-166. https://doi;.org/ 10.1108/IntR-06-2017-0221.

Del Vecchio, M., Kharlamov, A., Parry, G., & Pogrebna, G. (2020). Improving productivity in hollywood with data science using emotional arcs of movies to drive product and service innovation in entertainment industries. Journal of the Operational Research Society.72, 1110-1137. https://doi.org/10.1080/01605682.2019.170594.

Vermeer, S. A. M., Araujo, T., Bernritter, S., &Noort, G. V. (2019). The wood for the trees how machine learning can help firms in identifying relevant electronic word of mouth in social media. International Research In Marketing.36(3), 492-508. https://doi.org/10.1016/j.ijresmar.2019.01.010.

Walasek, L., Bhatia, S. & Brown, G. (2017). Positional goods and the social rank hypothesis income inequality affects online chatter about high and low status brands on twitter.Journal of Consumer Psychology.28 (1), 138-148. https://doi.org/10.1002/jcpy.1012.

Yadav, R., & Kumar, A. (2019). News based supervised sentiment analysis for prediction of futures buying behavior. IIMB Management Review. 31(2), 157-166. https://doi.org/10.1016/j.iimb.2019.03.006.

Yoon, S., Elhadad, N. & Bakken, S. (2013). A practical approach for content mining of tweets. American journal of preventive medicine. 45(1), 122-129. https://doi.org/10.1016/j.amepre.2013.02.025.

Zhang et al., (2022). Would you enjoy virtual travel the characteristics and causes of virtual tourists sentiment under the influence of the covid19 pandemic. Tourism Management. (88), 1-13. https://doi.org/10.1016/j.tourman.2021.104429.

Zhang, M. Wang, Y., &Olya, H. (2022). Shaping social media analytics in the pursuit of organizational agility a real options theory perspective. Tourism Management, (88), 1-11.https://doi.org/10.1016/j.tourman.2021.104415.

Published
2024-12-06
How to Cite
Lula, C. de S. G., & Limongi, R. (2024). Análise de Sentimento na Área de Gestão e Negócios: Uma Visão Geral e Proposta de Agenda de Pesquisa. Revista Interdisciplinar De Marketing, 14(2), 161-182. https://doi.org/10.4025/rimar.v14i2.67334