<b>Development of an adaptive genetic algorithm for simulation optimization
DOI:
https://doi.org/10.4025/actascitechnol.v37i3.25986Palavras-chave:
discrete-event simulation, meta-heuristic, optimization methods, computational timeResumo
Optimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm´s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package.
Â
Â
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
