<b>Development of an adaptive genetic algorithm for simulation optimization
DOI:
https://doi.org/10.4025/actascitechnol.v37i3.25986Keywords:
discrete-event simulation, meta-heuristic, optimization methods, computational timeAbstract
Optimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm´s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package.
Â
Â
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



