<b>Nonlinear fractional diffusion equation: exact solutions</b> - DOI: 10.4025/actascitechnol.v28i1.1285

Authors

  • Giane Gonçalves UEM
  • Marcelo Kaminski Lenzi UFPR
  • Ervin Kaminski Lenzi UEM
  • Fernando José Antonio UEM
  • Alexandre Schot UEM

DOI:

https://doi.org/10.4025/actascitechnol.v28i1.1285

Keywords:

anomalous diffusion, nonlinear diffusion equation, Lévy distributions

Abstract

We devote this work to investigate the solutions of a generalized diffusion equation which contains spatial fractional derivatives and nonlinear terms. The presence of external forces and absorbent terms is also considered. The solutions found here can have a compact or long tail behavior. Particularly in the last case in the asymptotic limit, we relate these solutions to the Lévy or Tsallis distributions. In addition, from the results presented here, a rich class of diffusive processes, including normal and anomalous ones, can be obtained.

Downloads

Download data is not yet available.

Author Biography

Marcelo Kaminski Lenzi, UFPR

Possui graduação em Engenharia Quí­mica pela Universidade Estadual de Maringá (1999), mestrado em Engenharia Quí­mica pela Universidade Federal do Rio de Janeiro (2002) e doutorado em Engenharia Quí­mica pela Universidade Federal do Rio de Janeiro (2004). Atualmente é professor Adjunto I da Universidade Federal do Paraná. Tem experiência na área de Engenharia Quí­mica, com ênfase em Engenharia de Reações de Polimerização, atuando principalmente nos seguintes temas: modelagem, simulação, controle de processos Currí­culo Lattes

Published

2008-03-20

How to Cite

Gonçalves, G., Lenzi, M. K., Lenzi, E. K., Antonio, F. J., & Schot, A. (2008). <b>Nonlinear fractional diffusion equation: exact solutions</b> - DOI: 10.4025/actascitechnol.v28i1.1285. Acta Scientiarum. Technology, 28(1), 47–53. https://doi.org/10.4025/actascitechnol.v28i1.1285

Issue

Section

Chemical Engineering

Most read articles by the same author(s)

1 2 > >>