Energy efficiency in a dual engine using biogas and waste frying oil biodiesel
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.69561Keywords:
renewable energy; alternative fuel; biodiesel blends; fuel consumption; engine performance.Abstract
The generation of electric energy using alternative energy sources has been constantly studied by researchers owing to concerns regarding energy supply alternatives and the desire to reduce environmental impacts in its generation. This study evaluated the performance of an electricity generator operating in dual mode using biogas and biodiesel blends, which were obtained from a swine-waste biodigester and residual frying oil, respectively. The experiment was performed using blends B8, B20, B50, B80, and B100. The electrical power generated was higher in the dual mode corresponding to a load of 5.0 kW, showing differences of 18.7% for B8 and 21.7% for B100. In normal and dual modes, the B8 blend exhibited the lowest specific consumption of liquid fuel with values of 389.2 and 270.2 g kWh-1, respectively. The efficiency was higher in the normal mode, showing results of 22.0 and 24,7% using B8 and B100, respectively, compared to 17 and 20% in the dual mode corresponding to a load of 5.0 kW. These results indicate that biodiesel from residual frying oil can be used in normal mode and in combination with biogas in dual mode.
Downloads
References
Almeida, C., Bariccatti, R. A., Frare, L. M., Nogueira, C. E. C., Mondardo, A. A., Contini, L., Gomes, G. J., Rovaris, S. A., Santos, K. G., & Marques, F. (2017). Analysis of the socio-economic feasibility of the implementation of an agro-energy condominium in western Paraná - Brazil. Renewable and Sustainable Energy Reviews, 75, 601-608. https://doi.org/10.1016/j.rser.2016.11.029
Ambarita, H. (2017). Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode. Case Studies in Thermal Engineering, 10, 179-191. https://doi.org/10.1016/j.csite.2017.06.003
Atapour, M., Kariminia, H. R., & Moslehabadi, P. M. (2014). Optimization of biodiesel production by alkali-catalyzed transesterification of used frying oil. Process Safety and Environmental Protection, 92(2), 179-185. https://doi.org/10.1016/j.psep.2012.12.005
Barik, D., Murugan, S., Samal, S., & Sivaram, N. M. (2017). Combined effect of compression ratio and diethyl ether (DEE) port injection on performance and emission characteristics of a DI diesel engine fueled with upgraded biogas (UBG)-biodiesel dual fuel. Fuel, 209, 339-349. https://doi.org/10.1016/j.fuel.2017.08.015
Bora, B. J., & Saha, U. K. (2015). Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels. Renewable Energy, 81, 490-498. https://doi.org/10.1016/j.renene.2015.03.019
Buller, L. S., da Silva Romero, C. W., Lamparelli, R. A. C., Ferreira, S. F., Bortoleto, A. P., Mussatto, S. I., & Forster-Carneiro, T. (2021). A spatially explicit assessment of sugarcane vinasse as a sustainable by-product. Science of The Total Environment, 765, 142717. https://doi.org/10.1016/j.scitotenv.2020.142717
César, A. S, Werderits, D. E., de Oliveira Saraiva, G. L., & da Silva Guabiroba, R. C. (2017). The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renewable and Sustainable Energy Reviews, 72, 246-253. https://doi.org/10.1016/j.rser.2016.11.240
Egúsquiza, J. C., Braga, S. L., & Braga, C. V. M. (2009). Performance and gaseous emissions characteristics of a natural gas/diesel dual fuel turbocharged and aftercooled engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 31(2), 142-150. https://doi.org/10.1590/S1678-58782009000200007
Kadam, R., & Panwar, N. L. (2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73, 892-903. https://doi.org/10.1016/j.rser.2017.01.167
Karagí¶z, Y., Gí¼ler, İ., Sandalcı, T., Yí¼ksek, L., Dalkılıç, A. S., & Wongwises, S. (2016). Effects of hydrogen and methane addition on combustion characteristics, emissions, and performance of a CI engine. International Journal of Hydrogen Energy, 41(2), 1313-1325. https://doi.org/10.1016/j.ijhydene.2015.11.112
Lacchini, C., & Rí¼ther, R. (2015). The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil. Renewable Energy, 83, 786-798. https://doi.org/10.1016/j.renene.2015.05.045
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, 28(4), 500-518. https://doi.org/10.1016/j.biotechadv.2010.03.002
Mahla, S. K., Singla, V., Sandhu, S. S., & Dhir, A. (2018). Studies on biogas-fuelled compression ignition engine under dual fuel mode. Environmental Science and Pollution Research, 25, 9722-9729. https://doi.org/10.1007/s11356-018-1247-4
Mohite, A., Bora, B. J., Sharma, P., Sarıdemir, S., Mallick, D., Sunil, S., & AÄŸbulut, íœ. (2024). Performance enhancement and emission control through adjustment of operating parameters of a biogas-biodiesel dual fuel diesel engine: An experimental and statistical study with biogas as a hydrogen carrier. International Journal of Hydrogen Energy, 52(A), 752-764. https://doi.org/10.1016/j.ijhydene.2023.08.201
Mydeen, M. A., Venkateshwaran, M., Velan, S. S. S., Vigneshwari, C. A., & Kirubakaran, V. (2016). Self-circulating biogas generation for swine waste. Procedia Environmental Sciences, 35, 795-800. https://doi.org/10.1016/j.proenv.2016.07.095
Nguyen, V. N., Nayak, S. K., Le, H. S., Kowalski, J., Deepanraj, B., Duong, X. Q., Truong, T. H., Tran, V. D., Cao, D. N., & Nguyen, P. Q. P. (2024). Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode. International Journal of Hydrogen Energy, 49(B), 868-909. https://doi.org/10.1016/j.ijhydene.2023.09.130
Nietiedt, G. H., Schlosser, J. F., Ribas, R. L., Frantz, U. G., & Russini, A. (2011). Desempenho de motor de injeção direta sob misturas de biodiesel metílico de soja. Ciência Rural, 41(7), 1177-1182. https://doi.org/10.1590/S0103-84782011005000079
Paiva, P. H, Gurgacz, F., Gralick, J., Bassegio, D., Melegari de Souza, S. N., & Secco, D. (2022). Change in injection angle as alternative for diesel engine fueled with biodiesel blends. Acta Scientiarum. Technology, 44, e56059, 2022. https://doi.org/10.4025/actascitechnol.v44i1.56059
Rahman, K. A., & Ramesh, A. (2019). Studies on the effects of methane fraction and injection strategies in a biogas diesel common rail dual fuel engine. Fuel, 236, 147-165. https://doi.org/10.1016/j.fuel.2018.08.091
Ramesha, D. K., Bangari, A. S., Rathod, C. P., & Chaitanya R, S. (2015). Combustion, performance and emissions characteristics of a biogas fuelled diesel engine with fish biodiesel as pilot fuel. Biofuels, 6(1-2), 9-19. https://doi.org/10.1080/17597269.2015.1036960
Souza, S. N. D., Lenz, A. M., Werncke, I., Nogueira, C. E., Antonelli, J., & Souza, J. D. (2016). Gas emission and efficiency of an engine-generator set running on biogas. Engenharia Agrícola, 36(4), 613-621. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n4p613-621/2016
Souza, S. N. M., Werncke, I., Marques, C. A., Bariccatti, R. A., Santos, R. F., Nogueira, C. E. C., & Bassegio, D. (2013). Electric energy micro-production in a rural property using biogas as primary source. Renewable and Sustainable Energy Reviews, 28, 385-391. https://doi.org/10.1016/j.rser.2013.07.035
Souza, J. D., Souza, S. N. D., Bassegio, D., Secco, D., & Nadaletti, W. C. (2023). Performance of different engines in biogas-based distributed electricity generation systems. Engenharia Agrícola, 43(5), e20230120. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v43n5e20230120/2023
Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. https://doi.org/10.1016/j.apenergy.2012.11.061
Verma, S., Das, L. M., & Kaushik, S. C. (2017). Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy conversion and management, 138, 346-359. https://doi.org/10.1016/j.enconman.2017.01.066
Volpato, C. E. S., Conde, A. D. P., Barbosa, J. A., & Salvador, N. (2009). Desempenho de motor diesel quatro tempos alimentado com biodiesel de óleo de soja (B 100). Ciência e Agrotecnologia, 33, 1125-1130. http://dx.doi.org/10.1590/S1413-70542009000400025
Vidotto, L. C., Schneider, K., Morato, R. W., do Nascimento, L. R., & Rí¼ther, R. (2024). An evaluation of the potential of agrivoltaic syst ems in Brazil. Applied Energy, 360, 122782. https://doi.org/10.1016/j.apenergy.2024.122782
Werncke, I., de Souza, S. N., Bassegio, D., & Secco, D. (2023). Comparison of emissions and engine performance of crambe biodiesel and biogas. Engenharia Agrícola, 43, e20220104. https://doi.org/10.1590/1809-4430-Eng.Agric.v43nepe20220104/2023
Yoon, S. H., & Lee, C. S. (2011). Experimental investigation on the combustion and exhaust emission characteristics of biogas - biodiesel dual-fuel combustion in a CI engine. Fuel processing technology, 92(5), 992-1000. https://doi.org/10.1016/j.fuproc.2010.12.021
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



