Drug release kinetics and transport mechanisms of doxorubicin from core-shell delivery systems
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70363Keywords:
diffusion; dissolution; drug release mechanism; drug release modeling; erosion; swellingAbstract
In the current research drug release kinetics and transport mechanisms of doxorubicin (DOX) from DOX, DOX/valspodar (PSC 833) and DOX/ᴅ-α- tocopheryl polyethylene glycol 1000 succinate (TPGS 1000) loaded polymeric micelle (PM) delivery systems were studied. Mathematical modeling has shown that the best suitability for release at pH 5.0 medium (R2 > 0.98) is provided by Korsmeyer-Peppas model and drug release kinetics are both anomalous transport (non-Fickian) and Super case II transport. The drug release was considered to fits in both the Korsmeyer-Peppas and Weibull models for DOX release from DOX-PM, DOX/PSC 833-PM, DOX/TPGS 1000-PM at pH 6.5 and pH 7.4 medium.
Downloads
References
Arifin, D.-Y., Lee, L. Y., & Wang, C.-H. (2006). Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Advanced Drug Delivery Reviews, 58(12-13), 1274-1325. https://doi.org/10.1016/j.addr.2006.09.007
Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. https://doi.org/10.1016/S0928-0987(01)00095-1
Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica - Drug Research, 67(3), 217-223.
de Almeida, R. R., Magalhães, H. S., de Souza, J. R. R., Trevisan, M. T. S., Vieira, í. G. P., Feitosa, J. P. A., Araújo, T. G., & Ricardo, N. M. P. S. (2015). Exploring the potential of Dimorphandra gardneriana galactomannans as drug delivery systems. Industrial Crops and Products, 69, 284-289. https://doi.org/10.1016/j.indcrop.2015.02.041
Gouda, R., Baishya, H., & Qing, Z. (2017). Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. Journal of Developing Drugs, 6(2), 1000171. https://doi.org/10.4172/2329-6631.1000171
Gí¶kçe Kocabay, í–., & İsmail, O. (2023). Design and fabrication of anticancer drug-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles as controlled release system. ChemistrySelect, 8(4), e202204543. https://doi.org/10.1002/slct.202204543
Gí¶kçe Kocabay, í–., & İsmail, O. (2020). Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(5), 328-337. https://doi.org/10.1080/00914037.2020.1713784
Guo, F., Guo, D., Zhang, W., Yan, Q., Yang, Y., Hong, W., & Yang, G. (2017). Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. European Journal of Pharmaceutical Sciences, 99, 328-336. https://doi.org/10.1016/j.ejps.2017.01.001
Hao, T., Chen, D., Liu, K., Qi, Y., Tian, Y., Sun, P., ... Li, Z. (2015). Micelles of d-α-tocopheryl polyethylene glycol 2000 succinate (TPGS 2K) for doxorubicin delivery with reversal of multidrug resistance. ACS Applied Materials and Interfaces, 7(32), 18064-18075. https://doi.org/10.1021/acsami.5b04995
Jain, A., Thakur, K., Sharma, G., Kush, P., & Jain, U. K. (2016). Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydrate Polymers, 137, 65-74. https://doi.org/10.1016/j.carbpol.2015.10.012
Khan, A. M., Hanif, M., Bukhari, N. I., Shamim, R., Rasool, F., Rasul, S., & Shafique, S. (2020). Artificial neural network (ANN) approach to predict an optimized pH-dependent mesalamine matrix tablet. Drug Design Development and Therapy, 14, 2435-2448. https://doi.org/10.2147/DDDT.S244016
Kim, M., Park, S. C., & Lee, D. Y. (2021). Glycyrrhizin as a nitric oxide regulator in cancer chemotherapy. Cancers (Basel), 13(22), 5762. https://doi.org/10.3390/cancers13225762
Kocabay, í–. G., & Ismail, O. (2018). Synthesis and characterization of poly(É›-caprolactone)-poly(ethylene glycol)-poly(É›-caprolactone) copolymers: investigation of the effect of blocks on micellization. Revue Roumaine de Chimie, 63(12), 1157-1167.
Effat, H., Abosharaf, H. A., & Radwan, A. M. (2024). Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells. Scientific Reports, 14, 2824. https://doi.org/10.1038/s41598-024-53320-9
Lowalekar, R., & Chauhan, L. S. (2016). In-vitro release kinetics, in-vitro buoyancy studies and in-vivo floating behaviour of gastro-retentive tablets of ciprofloxacin and metronidazole. Journal of Innovations in Pharmaceutical and Biological Sciences, 3(4), 67-72.
Guastaferro, M., Baldino, L., Cardea, S., & Reverchon, E. (2022). Supercritical processing of PCL and PCL-PEG blends to produce improved PCL-based porous scaffolds. The Journal of Supercritical Fluids, 186, 105611. https://doi.org/10.1016/j.supflu.2022.105611
Ogbaga, C. C., Miller, M. A. E., Athar, H., & Johnson, G. N. (2017). Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates. African Journal of Biotechnology, 16(18), 1061-1066. https://doi.org/10.5897/AJB2017.15918
Ramteke, K. H., Dighe, P. A., Kharat, A. R., & Patil, S. V. (2014). Mathematical models of drug dissolution: a review. Scholars Academic Journal of Pharmacy, 3(5), 388-396.
Mubeen, I., Abbas, G., Shah, S., & Assiri, A. A. (2024). Conjugated linoleic acid - carboxymethyl chitosan polymeric micelles to improve the solubility and oral bioavailability of paclitaxel. Pharmaceutics, 16(3), 342. https://doi.org/10.3390/pharmaceutics16030342
Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48(2-3), 139-157. https://doi.org/10.1016/s0169-409x(01)00112-0
Stanković, M., Tomar, J., Hiemstra, C., Steendam, R., Frijlink, H. W., & Hinrichs, W. L. J. (2014). Tailored protein release from biodegradable poly(ε-caprolactone-PEG)- b-poly(ε-caprolactone) multiblock-copolymer implants. European Journal of Pharmaceutics and Biopharmaceutics, 87(2), 329-337. https://doi.org/10.1016/j.ejpb.2014.02.012
Varun, Sonam, & Kakkar, R. (2019). Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Medicinal Chemistry Communications, 10(3), 351-368. https://doi.org/10.1039/c8md00585k
Vila, J., Moreno-Morales, J., & Balleste-Delpierre, C. (2020). Current landscape in the discovery of novel antibacterial agents. Clinical Microbiology and Infection, 26(5), 596-603. https://doi.org/10.1016/j.cmi.2019.09.015
Yang, C., Wu, T., Qi, Y., & Zhang, Z. (2018a). Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics, 8(2), 464-485. https://doi.org/10.7150/thno.22711
Yang, H., Villani, R. M., Wang, H., Simpson, M. J., Roberts, M. S., Tang, M., & Liang, X. (2018b). The role of cellular reactive oxygen species in cancer chemotherapy. Journal of Experimental and Clinical Cancer Research, 37(1), 266. https://doi.org/10.1186/s13046-018-0909-x
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.