Seleção de Portfolios: Uma análise comparativa dos cinco fatores de Fama e French e Redes Neurais Artificiais
Resumo
O presente artigo buscou avaliar o desempenho de uma rede neural artificial desenvolvida com o objetivo de identificar padrões e classificar títulos em carteiras de ações de empresas do mercado de capitais brasileiro, levando em consideração os pressupostos evidenciados pela Teoria das Carteiras de Markowitz (1952) de que a formação de portfolios reduz a variabilidade e possibilita a obtenção de maiores retornos ajustados ao risco. Para isto, utilizou-se variáveis em nível da firma, componentes dos cinco fatores de Fama e French (2015), os quais, inclusive, serviram para a montagem de portfolios através da utilização de regressão linear múltipla com dados em painel. Os resultados comparativos dos métodos de regressão com dados em painel e redes neurais artificiais apontaram que ambas as metodologias permitiram a obtenção de retornos acima da média de mercado, no entanto, que a rede neural artificial apresenta maior capacidade de evitar títulos que sejam prejudiciais ao portfólio e permite a suavização das perdas em momentos de instabilidade.Downloads
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 3.0 (CC BY 3.0): são permitidos o acompartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.