A delegação e uso de inteligências artificiais no contexto da auditoria interna

Resumen

Objetivo: Esta pesquisa teve como objetivo compreender os fatores que levam à delegação ou não de
tarefas para inteligência artificial no contexto da auditoria interna a luz da teoria da dominância tecnológica.

Método: Foram efetuadas entrevistas semiestruturadas com 13 profissionais de auditoria interna. Para
análise de dados foi empregada a análise de conteúdo.

Originalidade/Relevância: Ainda há uma lacuna para entender como os tomadores de decisões podem se
adaptar para o uso eficaz de técnicas de IA e como incorporaram estas técnicas nas análises. Existe um
chamado para estudos qualitativos que expliquem os motivos que levam a decisão para automação de
tarefas, buscando compreender um contexto específico.

Resultados: Tarefas que exigem julgamento profissional são preferíveis para não serem delegadas,
principalmente quando envolvem a detecção e prevenção de fraude. Os modelos precisam estar
parametrizados a fim de diferenciar uma fraude de um erro não intencional. Necessidade de novas
competências do profissional de auditoria, identificando a falta de formação em programação e uso de
inteligências artificiais.

Contribuições teóricas/metodológicas/práticas: Como contribuições teóricas, este estudo complementa
a literatura de delegação de tarefas ao identificar fatores que podem contribuir com adoção. Este estudo
também avança no campo teórico, pois identificou-se que a idade pode possuir uma característica
moderadora na experiência. Outra contribuição teórica é a proposição de um framework de delegação que
pode ser explorado em futuras pesquisas com o método de Design Science Research (DSR). Como
contribuição prática, ao delegar tarefas repetitivas e rotineiras para a IA, os auditores internos podem focar
em atividades mais complexas e estratégicas, aumentando a eficiência do departamento de auditoria
interna.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

William Vinicius Marques Correa, Faculdade Dom Bosco de Porto Alegre

Doutorando em Administração pela Pontifícia
Universidade Católica do Rio Grande do Sul (PUCRS)
Professor de Contabilidade na Faculdade Dom Bosco de Porto Alegre

Carla Bonato Marcolin, Faculdade de Gestão e Negócios da Universidade Federal de Uberlândia (UFU)

Doutora em Administração pela
Universidade Federal do Rio Grande do Sul (UFRGS)
Professora da Faculdade de Gestão e Negócios da
Universidade Federal de Uberlândia (UFU)

Fernanda da Silva Momo, Departamento de Ciências Contábeis e Atuariais da Faculdade de Ciências Econômicas da Universidade Federal do Rio Grande do Sul (UFRGS)

Doutora em Administração com Ênfase em Gestão de Sistemas e Tecnologia da Informação pela

Universidade Federal do Rio Grande do Sul (UFRGS)

Professora do Departamento de Ciências Contábeis e Atuariais da Faculdade de Ciências Econômicas da

Universidade Federal do Rio Grande do Sul (UFRGS)

Citas

Abdi, M. D., Dobamo, H. A., & Bayu, K. B. (2021). Exploring current opportunity and threats of artificial intelligence on small and medium enterprises accounting function; evidence from South west part of Ethiopia, Oromiya, Jimma and Snnpr, Bonga. Academy of Accounting and Financial Studies Journal, 25(2), 11. https://www.abacademies.org/articles/exploring-current-opportunity-and-threats-of-artificial-intelligence-on-small-and-medium-enterprises-accounting-function-evidence-10407.html

Aboud, A., & Robinson, B. (2020). Fraudulent financial reporting and data analytics: An explanatory study from Ireland. Accounting Research Journal, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ARJ-04-2020-0079

Arnold, Clark, Collier, Leech, & Sutton. (2006). The Differential Use and Effect of Knowledge-Based System Explanations in Novice and Expert Judgment Decisions. MIS Quarterly, 30(1), 79. https://doi.org/10.2307/25148718

Arnold, V. (2018). The changing technological environment and the future of behavioural research in accounting. Accounting & Finance, 58(2), 315–339. https://doi.org/10.1111/acfi.12218

Arnold, V., Collier, P. A., Leech, S. A., & Sutton, S. G. (2004). Impact of intelligent decision aids on expert and novice decision-makers’ judgments. Accounting and Finance, 44(1), 1–26. https://doi.org/10.1111/j.1467-629x.2004.00099.x

Arnold, V., & Sutton, S. G. (1998). The theory of technology dominance: Understanding the impact of intelligent decision aids on decision maker’s judgment. Advances in Accounting Behavioral Research, 1, 175–194.

Baird, A., & Maruping, L. M. (2021). The Next Generation of Research on IS Use: A Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS Quarterly, 45(1), 315–341. https://doi.org/10.25300/MISQ/2021/15882

Benbya, H., Pachidi, S., & Jarvenpaa, S. L. (2021). Special Issue Editorial: Artificial Intelligence in Organizations: Implications for Information Systems Research. Journal of the Association for Information Systems, 23.

Bertomeu, J. (2020). Machine learning improves accounting: Discussion, implementation and research opportunities. Review of Accounting Studies, 25(3), 1135–1155. https://doi.org/10.1007/s11142-020-09554-9

Bertomeu, J., Cheynel, E., Floyd, E., & Pan, W. (2021). Using machine learning to detect misstatements. Review of Accounting Studies, 26(2), 468–519. https://doi.org/10.1007/s11142-020-09563-8

Betti, N., & Sarens, G. (2021). Understanding the internal audit function in a digitalised business environment. Journal of Accounting & Organizational Change, 17(2), 197–216. https://doi.org/10.1108/JAOC-11-2019-0114

Bierstaker, J., Janvrin, D., & Lowe, D. J. (2014). What factors influence auditors' use of computer-assisted audit techniques?. Advances in Accounting, 30(1), 67-74. https://doi.org/10.1016/j.adiac.2013.12.005.

Borges, W. G., Leroy, R. S. D., Carvalho, L. F., Lima, N. C., & Oliveira, J. M. (2020). Implicações da Inteligência Artificial na Auditoria Interna no Brasil: Análise sob a Percepção de Profissionais. Sociedade, Contabilidade e Gestão, 15(1), 23–40. https://doi.org/10.21446/scg_ufrj.v0i0.25284

Brown, N. C., Crowley, R. M., & Elliott, W. B. (2020). What Are You Saying? Using topic to Detect Financial Misreporting. Journal of Accounting Research, 58(1), 237–291. https://doi.org/10.1111/1475-679X.12294

Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral Implications of Big Data’s Impact on Audit Judgment and Decision Making and Future Research Directions. Accounting Horizons, 29(2), 451–468. https://doi.org/10.2308/acch-51023

CFC (2016a). NBC TA 200 (R1) – Objetivos gerais do auditor independente e a condução da auditoria em conformidade com normas de auditoria. https://www1.cfc.org.br/sisweb/SRE/docs/NBCTA200(R1).pdf

CFC (2016b). NBC TA 240 (R1) – Responsabilidade do auditor em relação a fraude, no contexto da auditoria de demonstrações contábeis. https://www2.cfc.org.br/sisweb/sre/detalhes_sre.aspx?Codigo=2016/NBCTA240(R1)

Ding, K., Lev, B., Peng, X., Sun, T., & Vasarhelyi, M. A. (2020). Machine learning improves accounting estimates: Evidence from insurance payments. Review of Accounting Studies, 25(3), 1098–1134. https://doi.org/10.1007/s11142-020-09546-9

Dyball, M. C., & Seethamraju, R. (2021). The impact of client use of blockchain technology on audit risk and audit approach—An exploratory study. International Journal of Auditing, 25(2), 602–615. https://doi.org/10.1111/ijau.12238

Evangelista, J. (2020). Estudo sobre a Teoria da Dominância Tecnológica no uso da inteligência artificial aplicada a Gestão Tributária no Brasil [Dissertação de Mestrado, Centro Universitário FECAP]. http://tede.fecap.br:8080/handle/123456789/849

Eilifsen, A., Kinserdal, F., Messier, W. F, & McKee, T. E. (2020). An Exploratory Study into the Use of Audit Data Analytics on Audit Engagements. Accounting Horizons, 34 (4): 75–103. https://doi.org/10.2308/HORIZONS-19-121

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019

Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural Language Processing in Accounting, Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research: NLP in Accounting, Auditing and Finance. Intelligent Systems in Accounting, Finance and Management, 23(3), 157–214. https://doi.org/10.1002/isaf.1386

Flick, U. (2012). Introdução à Metodologia de Pesquisa: um guia para iniciantes. Penso.

Garven, S., & Scarlata, A. (2020). An examination of factors associated with investment in internal auditing technology. Managerial Auditing Journal, 35(7), 955–978. https://doi.org/10.1108/MAJ-06-2019-2321

Gray, G. L., Chiu, V., Liu, Q., & Li, P. (2014). The expert systems life cycle in AIS research: What does it mean for future AIS research? International Journal of Accounting Information Systems, 15(4), 423–451. https://doi.org/10.1016/j.accinf.2014.06.001

Hampton, C. (2005). Determinants of reliance: An empirical test of the theory of technology dominance. International Journal of Accounting Information Systems, 6(4), 217–240. https://doi.org/10.1016/j.accinf.2005.10.001

Hass, S., Abdolmohammadi, M. J., & Burnaby, P. (2006). The Americas literature review on internal auditing. Managerial Auditing Journal, 21(8), 835–844. https://doi.org/10.1108/02686900610703778

Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35, 100433. https://doi.org/10.1016/j.accinf.2019.100433

International Auditing and Assurance Standards Board [IAASB] (2009). International Standard on Auditing 200: Overall objectives of the independent auditor and the conduct of an audit in accordance with international standards on auditing. https://www.ifac.org/system/files/publications/files/A009%202012%20IAASB%20Handbook%20ISA%20200.pdf

Institute of Internal Auditors [IIA]. (2021). The IIA's Internal Audit Competency Framework. https://www.theiia.org/en/content/guidance/mandatory/standards/ia-competency-framework/

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007

Jones, K. K., Baskerville, R. L., Sriram, R. S., & Ramesh, B. (2017). The impact of legislation on the internal audit function. Journal of Accounting & Organizational Change, 13(4), 450–470. https://doi.org/10.1108/JAOC-02-2015-0019

Kenno, S. A., McCracken, S. A., & Salterio, S. E. (2017). Financial Reporting Interview-Based Research: A Field Research Primer with an Illustrative Example. Behavioral Research in Accounting, 29(1), 77–102. https://doi.org/10.2308/bria-51648

Kokina, J., & Blanchette, S. (2019). Early evidence of digital labor in accounting: Innovation with Robotic Process Automation. International Journal of Accounting Information Systems, 35, 100431. https://doi.org/10.1016/j.accinf.2019.100431

Kokina, J., & Davenport, T. H. (2017). The Emergence of Artificial Intelligence: How Automation is Changing Auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://doi.org/10.2308/jeta-51730

Koreff, J (2022). Are Auditors' Reliance on Conclusions from Data Analytics Impacted by Different Data Analytic Inputs?. Journal of Information Systems, 36 (1), 19–37. https://doi.org/10.2308/ISYS-19-051

Korhonen, T., Selos, E., Laine, T., & Suomala, P. (2020). Exploring the programmability of management accounting work for increasing automation: An interventionist case study. Accounting, Auditing & Accountability Journal, 34(2), 253–280. https://doi.org/10.1108/AAAJ-12-2016-2809

Krieger, F., Drews, P., & Velte, P. (2021). Explaining the (non-) adoption of advanced data analytics in auditing: A process theory. International Journal of Accounting Information Systems, 41, 100511. https://doi.org/10.1016/j.accinf.2021.100511

Lei n. 13.709, de 14 de agosto de 2018 (2018). Lei Geral de Proteção de Dados Pessoais (LGPD). https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm

Lamboglia, R., Lavorato, D., Scornavacca, E., & Za, S. (2021). Exploring the relationship between audit and technology. A bibliometric analysis. Meditari Accountancy Research, 29(5), 1233–1260. https://doi.org/10.1108/MEDAR-03-2020-0836

Losbichler, H., & Lehner, O. M. (2021). Limits of artificial intelligence in controlling and the ways forward: A call for future accounting research. Journal of Applied Accounting Research, 22(2), 365–382. https://doi.org/10.1108/JAAR-10-2020-0207

Mala, R., & Chand, P. (2015). Judgment and Decision-Making Research in Auditing and Accounting: Future Research Implications of Person, Task, and Environment Perspective. Accounting Perspectives, 14(1), 1–50. https://doi.org/10.1111/1911-3838.12040

Mancini, D. (2016). Accounting Information Systems in an Open Society. Emerging Trends and Issues. Management Control, 1, 5–16. https://doi.org/10.3280/MACO2016-001001

Marconi, M. A., & Lakatos, E. M. (2021). Fundamentos de metodologia científica (9a ed.). Atlas.

Moll, J., & Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British Accounting Review, 51(6), 100833. https://doi.org/10.1016/j.bar.2019.04.002

Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics, 167(2), 209–234. https://doi.org/10.1007/s10551-019-04407-1

Qasim, A., & Kharbat, F. F. (2020). Blockchain Technology, Business Data Analytics, and Artificial Intelligence: Use in the Accounting Profession and Ideas for Inclusion into the Accounting Curriculum. Journal of Emerging Technologies in Accounting, 17(1), 107–117. https://doi.org/10.2308/jeta-52649

Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37–58. https://doi.org/10.1016/j.accinf.2018.03.001

Raupp, F. M., & Beuren, I. M. (2013). Metodologia de pesquisa aplicável às Ciências Sociais. In I. M. Beuren (Org.). Como elaborar trabalhos monográficos em contabilidade: Teoria e prática (pp. 76-97). Atlas.

Richardson, R. J. (2017). Pesquisa social: métodos e técnicas (4a ed. rev., ampl. e atual.). Atlas.

Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37–58. https://doi.org/10.1016/j.accinf.2018.03.001

Roszkowska, P. (2021). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments. Journal of Accounting & Organizational Change, 17(2), 164–196. https://doi.org/10.1108/JAOC-09-2019-0098

Silva, A. H.; Fossá, M. I. T. (2015). Análise de Conteúdo: exemplo de aplicação da técnica para análise de dados qualitativos. Qualitas Revista Eletrônica, 17(1), 1-14.

Soh, D. S. B., & Martinov-Bennie, N. (2015). Internal auditors’ perceptions of their role in environmental, social and governance assurance and consulting. Managerial Auditing Journal, 30(1), 80–111. https://doi.org/10.1108/MAJ-08-2014-1075

Stewart, J., & Subramaniam, N. (2010). Internal audit independence and objectivity: Emerging research opportunities. Managerial Auditing Journal, 25(4), 328–360. https://doi.org/10.1108/02686901011034162

Strauss, A, & Corbin, J. (2008). Pesquisa qualitativa: técnicas e procedimentos para o desenvolvimento de teoria fundamentada (2ª ed.). Artmed.

Sutton, S. G., Arnold, V., & Holt, M. (2018). How Much Automation Is Too Much? Keeping the Human Relevant in Knowledge Work. Journal of Emerging Technologies in Accounting, 15(2), 15–25. https://doi.org/10.2308/jeta-52311

Sutton, S. G., Holt, M., & Arnold, V. (2016). “The reports of my death are greatly exaggerated”—Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 22, 60–73. https://doi.org/10.1016/j.accinf.2016.07.005

Sun, T. (Sophia). (2019). Applying Deep Learning to Audit Procedures: An Illustrative Framework. Accounting Horizons, 33(3), 89–109. https://doi.org/10.2308/acch-52455

Tiron-Tudor, A., & Deliu, D. (2022). Reflections on the human-algorithm complex duality perspectives in the auditing process. Qualitative Research in Accounting & Management, 31. https://doi.org/10.1108/QRAM-04-2021-0059

Vasarhelyi, M. A., Alles, M., Kuenkaikaew, S., & Littley, M. (2012). The acceptance and adoption of continuous auditing by internal auditors: A micro analysis. International Journal of Accounting Information Systems, 13(3), 267-281. https://doi.org/10.1016/j.accinf.2012.06.011

Westland, J. C. (2020). Predicting credit card fraud with Sarbanes‐Oxley assessments and Fama‐French risk factors. Intelligent Systems in Accounting, Finance and Management, 27(2), 95–107. https://doi.org/10.1002/isaf.1472

Zhang, C. (Abigail). (2019). Intelligent Process Automation in Audit. Journal of Emerging Technologies in Accounting, 16(2), 69–88. https://doi.org/10.2308/jeta-52653
Publicado
2026-01-02
Cómo citar
Marques Correa, W. V., Bonato Marcolin, C., & da Silva Momo, F. (2026). A delegação e uso de inteligências artificiais no contexto da auditoria interna. Enfoque: Reflexão Contábil, 45(1), 1-21. https://doi.org/10.4025/enfoque.v45i1.70818
Sección
Original Articles