A delegação e uso de inteligências artificiais no contexto da auditoria interna
Resumo
Objetivo: Esta pesquisa teve como objetivo compreender os fatores que levam à delegação ou não de
tarefas para inteligência artificial no contexto da auditoria interna a luz da teoria da dominância tecnológica.
Método: Foram efetuadas entrevistas semiestruturadas com 13 profissionais de auditoria interna. Para
análise de dados foi empregada a análise de conteúdo.
Originalidade/Relevância: Ainda há uma lacuna para entender como os tomadores de decisões podem se
adaptar para o uso eficaz de técnicas de IA e como incorporaram estas técnicas nas análises. Existe um
chamado para estudos qualitativos que expliquem os motivos que levam a decisão para automação de
tarefas, buscando compreender um contexto específico.
Resultados: Tarefas que exigem julgamento profissional são preferíveis para não serem delegadas,
principalmente quando envolvem a detecção e prevenção de fraude. Os modelos precisam estar
parametrizados a fim de diferenciar uma fraude de um erro não intencional. Necessidade de novas
competências do profissional de auditoria, identificando a falta de formação em programação e uso de
inteligências artificiais.
Contribuições teóricas/metodológicas/práticas: Como contribuições teóricas, este estudo complementa
a literatura de delegação de tarefas ao identificar fatores que podem contribuir com adoção. Este estudo
também avança no campo teórico, pois identificou-se que a idade pode possuir uma característica
moderadora na experiência. Outra contribuição teórica é a proposição de um framework de delegação que
pode ser explorado em futuras pesquisas com o método de Design Science Research (DSR). Como
contribuição prática, ao delegar tarefas repetitivas e rotineiras para a IA, os auditores internos podem focar
em atividades mais complexas e estratégicas, aumentando a eficiência do departamento de auditoria
interna.
Downloads
Referências
Aboud, A., & Robinson, B. (2020). Fraudulent financial reporting and data analytics: An explanatory study from Ireland. Accounting Research Journal, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ARJ-04-2020-0079
Arnold, Clark, Collier, Leech, & Sutton. (2006). The Differential Use and Effect of Knowledge-Based System Explanations in Novice and Expert Judgment Decisions. MIS Quarterly, 30(1), 79. https://doi.org/10.2307/25148718
Arnold, V. (2018). The changing technological environment and the future of behavioural research in accounting. Accounting & Finance, 58(2), 315–339. https://doi.org/10.1111/acfi.12218
Arnold, V., Collier, P. A., Leech, S. A., & Sutton, S. G. (2004). Impact of intelligent decision aids on expert and novice decision-makers’ judgments. Accounting and Finance, 44(1), 1–26. https://doi.org/10.1111/j.1467-629x.2004.00099.x
Arnold, V., & Sutton, S. G. (1998). The theory of technology dominance: Understanding the impact of intelligent decision aids on decision maker’s judgment. Advances in Accounting Behavioral Research, 1, 175–194.
Baird, A., & Maruping, L. M. (2021). The Next Generation of Research on IS Use: A Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS Quarterly, 45(1), 315–341. https://doi.org/10.25300/MISQ/2021/15882
Benbya, H., Pachidi, S., & Jarvenpaa, S. L. (2021). Special Issue Editorial: Artificial Intelligence in Organizations: Implications for Information Systems Research. Journal of the Association for Information Systems, 23.
Bertomeu, J. (2020). Machine learning improves accounting: Discussion, implementation and research opportunities. Review of Accounting Studies, 25(3), 1135–1155. https://doi.org/10.1007/s11142-020-09554-9
Bertomeu, J., Cheynel, E., Floyd, E., & Pan, W. (2021). Using machine learning to detect misstatements. Review of Accounting Studies, 26(2), 468–519. https://doi.org/10.1007/s11142-020-09563-8
Betti, N., & Sarens, G. (2021). Understanding the internal audit function in a digitalised business environment. Journal of Accounting & Organizational Change, 17(2), 197–216. https://doi.org/10.1108/JAOC-11-2019-0114
Bierstaker, J., Janvrin, D., & Lowe, D. J. (2014). What factors influence auditors' use of computer-assisted audit techniques?. Advances in Accounting, 30(1), 67-74. https://doi.org/10.1016/j.adiac.2013.12.005.
Borges, W. G., Leroy, R. S. D., Carvalho, L. F., Lima, N. C., & Oliveira, J. M. (2020). Implicações da Inteligência Artificial na Auditoria Interna no Brasil: Análise sob a Percepção de Profissionais. Sociedade, Contabilidade e Gestão, 15(1), 23–40. https://doi.org/10.21446/scg_ufrj.v0i0.25284
Brown, N. C., Crowley, R. M., & Elliott, W. B. (2020). What Are You Saying? Using topic to Detect Financial Misreporting. Journal of Accounting Research, 58(1), 237–291. https://doi.org/10.1111/1475-679X.12294
Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral Implications of Big Data’s Impact on Audit Judgment and Decision Making and Future Research Directions. Accounting Horizons, 29(2), 451–468. https://doi.org/10.2308/acch-51023
CFC (2016a). NBC TA 200 (R1) – Objetivos gerais do auditor independente e a condução da auditoria em conformidade com normas de auditoria. https://www1.cfc.org.br/sisweb/SRE/docs/NBCTA200(R1).pdf
CFC (2016b). NBC TA 240 (R1) – Responsabilidade do auditor em relação a fraude, no contexto da auditoria de demonstrações contábeis. https://www2.cfc.org.br/sisweb/sre/detalhes_sre.aspx?Codigo=2016/NBCTA240(R1)
Ding, K., Lev, B., Peng, X., Sun, T., & Vasarhelyi, M. A. (2020). Machine learning improves accounting estimates: Evidence from insurance payments. Review of Accounting Studies, 25(3), 1098–1134. https://doi.org/10.1007/s11142-020-09546-9
Dyball, M. C., & Seethamraju, R. (2021). The impact of client use of blockchain technology on audit risk and audit approach—An exploratory study. International Journal of Auditing, 25(2), 602–615. https://doi.org/10.1111/ijau.12238
Evangelista, J. (2020). Estudo sobre a Teoria da Dominância Tecnológica no uso da inteligência artificial aplicada a Gestão Tributária no Brasil [Dissertação de Mestrado, Centro Universitário FECAP]. http://tede.fecap.br:8080/handle/123456789/849
Eilifsen, A., Kinserdal, F., Messier, W. F, & McKee, T. E. (2020). An Exploratory Study into the Use of Audit Data Analytics on Audit Engagements. Accounting Horizons, 34 (4): 75–103. https://doi.org/10.2308/HORIZONS-19-121
Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural Language Processing in Accounting, Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research: NLP in Accounting, Auditing and Finance. Intelligent Systems in Accounting, Finance and Management, 23(3), 157–214. https://doi.org/10.1002/isaf.1386
Flick, U. (2012). Introdução à Metodologia de Pesquisa: um guia para iniciantes. Penso.
Garven, S., & Scarlata, A. (2020). An examination of factors associated with investment in internal auditing technology. Managerial Auditing Journal, 35(7), 955–978. https://doi.org/10.1108/MAJ-06-2019-2321
Gray, G. L., Chiu, V., Liu, Q., & Li, P. (2014). The expert systems life cycle in AIS research: What does it mean for future AIS research? International Journal of Accounting Information Systems, 15(4), 423–451. https://doi.org/10.1016/j.accinf.2014.06.001
Hampton, C. (2005). Determinants of reliance: An empirical test of the theory of technology dominance. International Journal of Accounting Information Systems, 6(4), 217–240. https://doi.org/10.1016/j.accinf.2005.10.001
Hass, S., Abdolmohammadi, M. J., & Burnaby, P. (2006). The Americas literature review on internal auditing. Managerial Auditing Journal, 21(8), 835–844. https://doi.org/10.1108/02686900610703778
Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35, 100433. https://doi.org/10.1016/j.accinf.2019.100433
International Auditing and Assurance Standards Board [IAASB] (2009). International Standard on Auditing 200: Overall objectives of the independent auditor and the conduct of an audit in accordance with international standards on auditing. https://www.ifac.org/system/files/publications/files/A009%202012%20IAASB%20Handbook%20ISA%20200.pdf
Institute of Internal Auditors [IIA]. (2021). The IIA's Internal Audit Competency Framework. https://www.theiia.org/en/content/guidance/mandatory/standards/ia-competency-framework/
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Jones, K. K., Baskerville, R. L., Sriram, R. S., & Ramesh, B. (2017). The impact of legislation on the internal audit function. Journal of Accounting & Organizational Change, 13(4), 450–470. https://doi.org/10.1108/JAOC-02-2015-0019
Kenno, S. A., McCracken, S. A., & Salterio, S. E. (2017). Financial Reporting Interview-Based Research: A Field Research Primer with an Illustrative Example. Behavioral Research in Accounting, 29(1), 77–102. https://doi.org/10.2308/bria-51648
Kokina, J., & Blanchette, S. (2019). Early evidence of digital labor in accounting: Innovation with Robotic Process Automation. International Journal of Accounting Information Systems, 35, 100431. https://doi.org/10.1016/j.accinf.2019.100431
Kokina, J., & Davenport, T. H. (2017). The Emergence of Artificial Intelligence: How Automation is Changing Auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://doi.org/10.2308/jeta-51730
Koreff, J (2022). Are Auditors' Reliance on Conclusions from Data Analytics Impacted by Different Data Analytic Inputs?. Journal of Information Systems, 36 (1), 19–37. https://doi.org/10.2308/ISYS-19-051
Korhonen, T., Selos, E., Laine, T., & Suomala, P. (2020). Exploring the programmability of management accounting work for increasing automation: An interventionist case study. Accounting, Auditing & Accountability Journal, 34(2), 253–280. https://doi.org/10.1108/AAAJ-12-2016-2809
Krieger, F., Drews, P., & Velte, P. (2021). Explaining the (non-) adoption of advanced data analytics in auditing: A process theory. International Journal of Accounting Information Systems, 41, 100511. https://doi.org/10.1016/j.accinf.2021.100511
Lei n. 13.709, de 14 de agosto de 2018 (2018). Lei Geral de Proteção de Dados Pessoais (LGPD). https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
Lamboglia, R., Lavorato, D., Scornavacca, E., & Za, S. (2021). Exploring the relationship between audit and technology. A bibliometric analysis. Meditari Accountancy Research, 29(5), 1233–1260. https://doi.org/10.1108/MEDAR-03-2020-0836
Losbichler, H., & Lehner, O. M. (2021). Limits of artificial intelligence in controlling and the ways forward: A call for future accounting research. Journal of Applied Accounting Research, 22(2), 365–382. https://doi.org/10.1108/JAAR-10-2020-0207
Mala, R., & Chand, P. (2015). Judgment and Decision-Making Research in Auditing and Accounting: Future Research Implications of Person, Task, and Environment Perspective. Accounting Perspectives, 14(1), 1–50. https://doi.org/10.1111/1911-3838.12040
Mancini, D. (2016). Accounting Information Systems in an Open Society. Emerging Trends and Issues. Management Control, 1, 5–16. https://doi.org/10.3280/MACO2016-001001
Marconi, M. A., & Lakatos, E. M. (2021). Fundamentos de metodologia científica (9a ed.). Atlas.
Moll, J., & Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British Accounting Review, 51(6), 100833. https://doi.org/10.1016/j.bar.2019.04.002
Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics, 167(2), 209–234. https://doi.org/10.1007/s10551-019-04407-1
Qasim, A., & Kharbat, F. F. (2020). Blockchain Technology, Business Data Analytics, and Artificial Intelligence: Use in the Accounting Profession and Ideas for Inclusion into the Accounting Curriculum. Journal of Emerging Technologies in Accounting, 17(1), 107–117. https://doi.org/10.2308/jeta-52649
Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37–58. https://doi.org/10.1016/j.accinf.2018.03.001
Raupp, F. M., & Beuren, I. M. (2013). Metodologia de pesquisa aplicável às Ciências Sociais. In I. M. Beuren (Org.). Como elaborar trabalhos monográficos em contabilidade: Teoria e prática (pp. 76-97). Atlas.
Richardson, R. J. (2017). Pesquisa social: métodos e técnicas (4a ed. rev., ampl. e atual.). Atlas.
Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37–58. https://doi.org/10.1016/j.accinf.2018.03.001
Roszkowska, P. (2021). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments. Journal of Accounting & Organizational Change, 17(2), 164–196. https://doi.org/10.1108/JAOC-09-2019-0098
Silva, A. H.; Fossá, M. I. T. (2015). Análise de Conteúdo: exemplo de aplicação da técnica para análise de dados qualitativos. Qualitas Revista Eletrônica, 17(1), 1-14.
Soh, D. S. B., & Martinov-Bennie, N. (2015). Internal auditors’ perceptions of their role in environmental, social and governance assurance and consulting. Managerial Auditing Journal, 30(1), 80–111. https://doi.org/10.1108/MAJ-08-2014-1075
Stewart, J., & Subramaniam, N. (2010). Internal audit independence and objectivity: Emerging research opportunities. Managerial Auditing Journal, 25(4), 328–360. https://doi.org/10.1108/02686901011034162
Strauss, A, & Corbin, J. (2008). Pesquisa qualitativa: técnicas e procedimentos para o desenvolvimento de teoria fundamentada (2ª ed.). Artmed.
Sutton, S. G., Arnold, V., & Holt, M. (2018). How Much Automation Is Too Much? Keeping the Human Relevant in Knowledge Work. Journal of Emerging Technologies in Accounting, 15(2), 15–25. https://doi.org/10.2308/jeta-52311
Sutton, S. G., Holt, M., & Arnold, V. (2016). “The reports of my death are greatly exaggerated”—Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 22, 60–73. https://doi.org/10.1016/j.accinf.2016.07.005
Sun, T. (Sophia). (2019). Applying Deep Learning to Audit Procedures: An Illustrative Framework. Accounting Horizons, 33(3), 89–109. https://doi.org/10.2308/acch-52455
Tiron-Tudor, A., & Deliu, D. (2022). Reflections on the human-algorithm complex duality perspectives in the auditing process. Qualitative Research in Accounting & Management, 31. https://doi.org/10.1108/QRAM-04-2021-0059
Vasarhelyi, M. A., Alles, M., Kuenkaikaew, S., & Littley, M. (2012). The acceptance and adoption of continuous auditing by internal auditors: A micro analysis. International Journal of Accounting Information Systems, 13(3), 267-281. https://doi.org/10.1016/j.accinf.2012.06.011
Westland, J. C. (2020). Predicting credit card fraud with Sarbanes‐Oxley assessments and Fama‐French risk factors. Intelligent Systems in Accounting, Finance and Management, 27(2), 95–107. https://doi.org/10.1002/isaf.1472
Zhang, C. (Abigail). (2019). Intelligent Process Automation in Audit. Journal of Emerging Technologies in Accounting, 16(2), 69–88. https://doi.org/10.2308/jeta-52653
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 3.0 (CC BY 3.0): são permitidos o acompartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.





