Short-term forecasting models for automated data backup system: segmented regression analysis
DOI:
https://doi.org/10.4025/actascitechnol.v42i1.46073Keywords:
data backup; short term forecast; segmented single linear regression.Abstract
The Information and Communication Technology (ICT) becomes a critical area to business success; organizations need to adopt additional measures to ensure the availability of their services. However, such services are often not planned, analyzed and monitored, which impacts the assurance quality to customers. The backup is the service addressed in this study, with the object of study of the automated data backup systems in operation at the Federal University of Itajuba - Brazil. The main objective of this research was to present a logical sequence of steps to obtain short-term forecast models that estimate the point at which each recording media reaches its storage capacity limit. The input data was collected in the metadata generated by the backup system, with 2 years data window. For the implementation of the models, the simple univariate linear regression technique was employed in conjunction, in some cases, with the simple segmented linear regression. In order to discover the breakpoint, a targeted approach to residual analysis was applied. The results obtained by the iterative implementation of the proposed algorithm showed adherence to the characteristics of the analyzed series, with accuracy measures, regression significance, normality residual through control charts, model adjustment, among others. As a result, an algorithm was developed for integration into automated backup systems using the methodology described in this study.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



